Suppr超能文献

突触多样性从生物神经网络到人工神经网络的概念转移。

Concept transfer of synaptic diversity from biological to artificial neural networks.

作者信息

Hofmann Martin, Becker Moritz Franz Peter, Tetzlaff Christian, Mäder Patrick

机构信息

Data-intensive Systems and Visualization Group (dAI.SY), Technische Universität Ilmenau, Max-Planck-Ring 14, Ilmenau, 98693, Thuringia, Germany.

Group of Computational Synaptic Physiology, Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, Göttingen, 37073, Lower Saxony, Germany.

出版信息

Nat Commun. 2025 Jun 2;16(1):5112. doi: 10.1038/s41467-025-60078-9.

Abstract

Recent developments in artificial neural networks have drawn inspiration from biological neural networks, leveraging the concept of the artificial neuron to model the learning abilities of biological nerve cells. However, while neuroscience has provided new insights into the mechanisms of biological neural networks, only a limited number of these concepts have been directly applied to artificial neural networks, with no guarantee of improved performance. Here, we address the discrepancy between the inhomogeneous and dynamic structures of biological neural networks and the largely homogeneous and fixed topologies of artificial neural networks. Specifically, we demonstrate successful integration of concepts of synaptic diversity, including spontaneous spine remodeling, synaptic plasticity diversity, and multi-synaptic connectivity, into artificial neural networks. Our findings reveal increased learning speed, prediction accuracy, and resilience to gradient inversion attacks. Our publicly available drop-in replacement code enables easy incorporation of these proposed concepts into existing networks.

摘要

人工神经网络的最新发展借鉴了生物神经网络的灵感,利用人工神经元的概念来模拟生物神经细胞的学习能力。然而,尽管神经科学为生物神经网络的机制提供了新的见解,但这些概念中只有有限的一部分被直接应用于人工神经网络,而且并不能保证性能会得到提升。在这里,我们解决了生物神经网络的非均匀和动态结构与人工神经网络在很大程度上均匀和固定的拓扑结构之间的差异。具体来说,我们展示了将突触多样性的概念,包括自发的棘突重塑、突触可塑性多样性和多突触连接,成功整合到人工神经网络中。我们的研究结果表明,学习速度、预测准确性以及对梯度反转攻击的恢复能力都有所提高。我们公开提供的可直接替换代码能够轻松地将这些提出的概念纳入现有网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a88a/12130319/7d88c5029eea/41467_2025_60078_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验