Schaub Michael, Badia-Boher Jaume A
Schweizerische Vogelwarte Sempach Switzerland.
Ecol Evol. 2025 Jun 1;15(6):e71517. doi: 10.1002/ece3.71517. eCollection 2025 Jun.
The recovery of dead marked individuals, either alone or in combination with encounters of these individuals while alive, is an important source of data for estimating survival in birds, mammals, and fish. Various models have been developed to analyze such data in a Bayesian framework, including single-state and multistate state-space models, marginalized state-space models, and multinomial models. An overview of the different formulations, together with an assessment of their parameter accuracy, computational efficiency, and flexibility in covariate modeling, is lacking so far. We assessed 13 models based on data simulation and analysis with the widely used R-based software NIMBLE and JAGS. We found that all the models evaluated produced accurate parameter estimates, with the exception of the multistate state-space models, which produced biased parameter estimates. This is because the standard MCMC samplers required for Bayesian inference do not work properly for this model. Although such multistate models work correctly in the frequentist framework, they should not be used in the Bayesian framework unless specially developed samplers are used. Instead, single-state state-space models, marginalized multistate state-space models, multinomial multistate models, or reparameterized multistate models should be used. The marginalized state-space and multinomial models were the most computationally efficient. The models evaluated do not differ in their ability to model temporal covariates but do differ for individual continuous covariates. The latter can be modeled in state-space models but not in multinomial models. We also show that single-state models can be formulated for the joint analysis of dead-recovery and live encounter data, which are usually modeled with multistate models. This facilitates the inclusion of further auxiliary data and results in a computationally efficient model. We expect our overview to help ecologists decide which model to use when estimating survival from dead-recovery data in the Bayesian framework.
回收已标记的死亡个体,无论是单独回收还是与这些个体存活时的遭遇情况相结合,都是估计鸟类、哺乳动物和鱼类存活率的重要数据来源。已经开发了各种模型来在贝叶斯框架中分析此类数据,包括单状态和多状态状态空间模型、边缘化状态空间模型以及多项模型。到目前为止,缺乏对不同公式的概述以及对它们的参数准确性、计算效率和协变量建模灵活性的评估。我们使用广泛使用的基于R的软件NIMBLE和JAGS,通过数据模拟和分析评估了13种模型。我们发现,除了多状态状态空间模型产生有偏差的参数估计外,所有评估的模型都产生了准确的参数估计。这是因为贝叶斯推断所需的标准MCMC采样器对此模型不起作用。尽管此类多状态模型在频率主义框架中能正常工作,但除非使用专门开发的采样器,否则不应在贝叶斯框架中使用。相反,应使用单状态状态空间模型、边缘化多状态状态空间模型、多项多状态模型或重新参数化的多状态模型。边缘化状态空间模型和多项模型计算效率最高。评估的模型在对时间协变量建模的能力上没有差异,但在对个体连续协变量建模方面存在差异。后者可以在状态空间模型中建模,但不能在多项模型中建模。我们还表明,可以制定单状态模型来联合分析死亡回收和存活遭遇数据,而这些数据通常用多状态模型建模。这便于纳入更多辅助数据,并产生一个计算效率高的模型。我们期望我们的概述能帮助生态学家在贝叶斯框架中从死亡回收数据估计存活率时决定使用哪种模型。