Cave Joseph, Christiono Anne, Schiavone Carmine, Pownall Henry J, Cristini Vittorio, Staquicini Daniela I, Pasqualini Renata, Arap Wadih, Brinker C Jeffrey, Campen Matthew, Wang Zhihui, Van Nguyen Hien, Noureddine Achraf, Dogra Prashant
Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, Texas 77030, United States.
Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York 10065, United States.
ACS Nano. 2025 Jun 17;19(23):21538-21555. doi: 10.1021/acsnano.5c03590. Epub 2025 Jun 3.
The safety of inorganic nanoparticles (NPs) remains a critical challenge for their clinical translation. To address this, we developed a machine learning (ML) framework that predicts NP toxicity both and , leveraging physicochemical properties and experimental conditions. A curated cytotoxicity dataset was used to train and validate binary classification models, with top-performing models undergoing explainability analysis to identify key determinants of toxicity and establish structure-toxicity relationships. External testing with diverse inorganic NPs validated the predictive accuracy of the framework for settings. To enable organ-specific toxicity predictions , we integrated a physiologically based pharmacokinetic (PBPK) model into the ML pipeline to quantify NP exposure across organs. Retraining the ML models with PBPK-derived exposure metrics yielded robust predictions of organ-specific nanotoxicity, further validating the framework. This PBPK-informed ML approach can thus serve as a potential alternative approach to streamline NP safety assessment, enabling the rational design of safer NPs and expediting their clinical translation.
无机纳米颗粒(NPs)的安全性仍然是其临床转化面临的关键挑战。为了解决这一问题,我们开发了一种机器学习(ML)框架,该框架利用物理化学性质和实验条件来预测NP的毒性。一个经过整理的细胞毒性数据集被用于训练和验证二元分类模型,表现最佳的模型会进行可解释性分析,以确定毒性的关键决定因素并建立结构-毒性关系。使用各种无机NP进行的外部测试验证了该框架在不同设置下的预测准确性。为了实现器官特异性毒性预测,我们将基于生理学的药代动力学(PBPK)模型集成到ML管道中,以量化NP在各个器官中的暴露情况。使用PBPK衍生的暴露指标对ML模型进行重新训练,得到了对器官特异性纳米毒性的可靠预测,进一步验证了该框架。因此,这种基于PBPK的ML方法可以作为一种潜在的替代方法,以简化NP安全性评估,实现更安全NP的合理设计并加速其临床转化。