Suppr超能文献

杀蛙壶菌在有细胞壁和无细胞壁的细胞类型中采用不同策略来调节细胞内压力。

Frog-killing chytrid fungi deploy different strategies to regulate intracellular pressure in cell types that have or lack a cell wall.

作者信息

Prostak Sarah, Velle Katrina B, Fritz-Laylin Lillian K

机构信息

Department of Biology, University of Massachusetts Amherst, Amherst, MA.

Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, 02747.

出版信息

bioRxiv. 2025 May 14:2025.05.13.653819. doi: 10.1101/2025.05.13.653819.

Abstract

Cell morphogenesis is crucial for the physiology of animals and fungi alike. While animals typically shape their cells using the actin cytoskeleton, fungi control cell shape through polarized deposition of new cell wall material, which is inflated by intracellular osmotic "turgor" pressure. Understanding where and when these mechanisms evolved is essential for understanding the evolution of cell morphogenesis. To this end, we study chytrid fungi, which have a cell type that lacks a cell wall (the "zoospore") and a cell type that has a cell wall (the "sporangium"). While chytrid sporangia rely on polarized cell wall growth to control shape, we previously showed that the "frog-killing" chytrid fungus () uses actin to control zoospore shape. Whether either zoospores or sporangia also use intracellular pressure regulation in cell shape control remains an open question. Here, we use live-cell imaging, environmental perturbations, and small molecule inhibitors to show that sporangia generate and maintain turgor pressure, while zoospores use specialized organelles called contractile vacuoles to pump water out of the cell, thereby keeping internal pressure low. Because chytrid fungi diverged prior to the evolution of the Dikarya-the fungal group comprising yeast, mushrooms, and filamentous fungi-these findings suggest that turgor pressure evolved early, and that cell morphogenesis underwent a major transition during early fungal evolution. We also suggest that the last common fungal ancestor may have, like chytrid fungi, employed stage-specific strategies for cell shape control-illustrating how developmental flexibility in cellular mechanisms can serve as a wellspring of evolutionary innovation.

摘要

细胞形态发生对动物和真菌的生理学都至关重要。动物通常利用肌动蛋白细胞骨架塑造其细胞,而真菌则通过新细胞壁材料的极化沉积来控制细胞形状,这种沉积由细胞内的渗透“膨压”膨胀。了解这些机制在何时何地进化对于理解细胞形态发生的进化至关重要。为此,我们研究了壶菌,它具有一种缺乏细胞壁的细胞类型(“游动孢子”)和一种具有细胞壁的细胞类型(“孢子囊”)。虽然壶菌孢子囊依靠极化细胞壁生长来控制形状,但我们之前表明,“杀蛙”壶菌()利用肌动蛋白来控制游动孢子的形状。游动孢子或孢子囊是否也在细胞形状控制中使用细胞内压力调节仍是一个悬而未决的问题。在这里,我们使用活细胞成像、环境扰动和小分子抑制剂来表明,壶菌孢子囊产生并维持膨压,而壶菌游动孢子利用称为收缩泡的特殊细胞器将水泵出细胞,从而保持内部压力较低。由于壶菌在双核菌(包括酵母、蘑菇和丝状真菌的真菌类群)进化之前就已经分化,这些发现表明膨压进化得很早,并且细胞形态发生在早期真菌进化过程中经历了重大转变。我们还认为,最后的共同真菌祖先可能像壶菌一样,采用阶段特异性策略来控制细胞形状——这说明了细胞机制中的发育灵活性如何能够成为进化创新的源泉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acc0/12132441/946c9ffed5a2/nihpp-2025.05.13.653819v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验