Li Hao, Liu Han, Hu Dewei, Wang Jiacheng, Oguz Ipek
Vanderbilt University.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:389-399. doi: 10.1007/978-3-031-72384-1_37. Epub 2024 Oct 3.
In this paper, we present PRISM, a romptable and obust nteractive egmentation odel, aiming for precise segmentation of 3D medical images. PRISM accepts various visual inputs, including points, boxes, and scribbles as sparse prompts, as well as masks as dense prompts. Specifically, PRISM is designed with four principles to achieve robustness: (1) Iterative learning. The model produces segmentations by using visual prompts from previous iterations to achieve progressive improvement. (2) Confidence learning. PRISM employs multiple segmentation heads per input image, each generating a continuous map and a confidence score to optimize predictions. (3) Corrective learning. Following each segmentation iteration, PRISM employs a shallow corrective refinement network to reassign mislabeled voxels. (4) Hybrid design. PRISM integrates hybrid encoders to better capture both the local and global information. Comprehensive validation of PRISM is conducted using four public datasets for tumor segmentation in the colon, pancreas, liver, and kidney, highlighting challenges caused by anatomical variations and ambiguous boundaries in accurate tumor identification. Compared to state-of-the-art methods, both with and without prompt engineering, PRISM significantly improves performance, achieving results that are close to human levels. The code is publicly available at https://github.com/MedICL-VU/PRISM.
在本文中,我们提出了PRISM,一种可快速响应且稳健的交互式分割模型,旨在对3D医学图像进行精确分割。PRISM接受各种视觉输入,包括点、框和涂鸦作为稀疏提示,以及掩码作为密集提示。具体而言,PRISM基于四个原则进行设计以实现稳健性:(1)迭代学习。该模型通过使用来自先前迭代的视觉提示来生成分割结果,以实现逐步改进。(2)置信度学习。PRISM为每个输入图像采用多个分割头,每个分割头生成一个连续映射和一个置信度分数以优化预测。(3)校正学习。在每次分割迭代之后,PRISM采用一个浅层校正细化网络来重新分配错误标记的体素。(4)混合设计。PRISM集成了混合编码器,以更好地捕捉局部和全局信息。使用四个用于结肠、胰腺、肝脏和肾脏肿瘤分割的公共数据集对PRISM进行了全面验证,突出了在准确识别肿瘤时解剖变异和模糊边界所带来的挑战。与最先进的方法相比,无论有无提示工程,PRISM都显著提高了性能,取得了接近人类水平的结果。代码可在https://github.com/MedICL-VU/PRISM上公开获取。