Suppr超能文献

PRISM:一种具有视觉提示的可提示且强大的交互式分割模型。

PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.

作者信息

Li Hao, Liu Han, Hu Dewei, Wang Jiacheng, Oguz Ipek

机构信息

Vanderbilt University.

出版信息

Med Image Comput Comput Assist Interv. 2024 Oct;15003:389-399. doi: 10.1007/978-3-031-72384-1_37. Epub 2024 Oct 3.

Abstract

In this paper, we present PRISM, a romptable and obust nteractive egmentation odel, aiming for precise segmentation of 3D medical images. PRISM accepts various visual inputs, including points, boxes, and scribbles as sparse prompts, as well as masks as dense prompts. Specifically, PRISM is designed with four principles to achieve robustness: (1) Iterative learning. The model produces segmentations by using visual prompts from previous iterations to achieve progressive improvement. (2) Confidence learning. PRISM employs multiple segmentation heads per input image, each generating a continuous map and a confidence score to optimize predictions. (3) Corrective learning. Following each segmentation iteration, PRISM employs a shallow corrective refinement network to reassign mislabeled voxels. (4) Hybrid design. PRISM integrates hybrid encoders to better capture both the local and global information. Comprehensive validation of PRISM is conducted using four public datasets for tumor segmentation in the colon, pancreas, liver, and kidney, highlighting challenges caused by anatomical variations and ambiguous boundaries in accurate tumor identification. Compared to state-of-the-art methods, both with and without prompt engineering, PRISM significantly improves performance, achieving results that are close to human levels. The code is publicly available at https://github.com/MedICL-VU/PRISM.

摘要

在本文中,我们提出了PRISM,一种可快速响应且稳健的交互式分割模型,旨在对3D医学图像进行精确分割。PRISM接受各种视觉输入,包括点、框和涂鸦作为稀疏提示,以及掩码作为密集提示。具体而言,PRISM基于四个原则进行设计以实现稳健性:(1)迭代学习。该模型通过使用来自先前迭代的视觉提示来生成分割结果,以实现逐步改进。(2)置信度学习。PRISM为每个输入图像采用多个分割头,每个分割头生成一个连续映射和一个置信度分数以优化预测。(3)校正学习。在每次分割迭代之后,PRISM采用一个浅层校正细化网络来重新分配错误标记的体素。(4)混合设计。PRISM集成了混合编码器,以更好地捕捉局部和全局信息。使用四个用于结肠、胰腺、肝脏和肾脏肿瘤分割的公共数据集对PRISM进行了全面验证,突出了在准确识别肿瘤时解剖变异和模糊边界所带来的挑战。与最先进的方法相比,无论有无提示工程,PRISM都显著提高了性能,取得了接近人类水平的结果。代码可在https://github.com/MedICL-VU/PRISM上公开获取。

相似文献

1
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.
Med Image Comput Comput Assist Interv. 2024 Oct;15003:389-399. doi: 10.1007/978-3-031-72384-1_37. Epub 2024 Oct 3.
2
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.
Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.
3
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635207. Epub 2024 Aug 22.
4
Sam2Rad: A segmentation model for medical images with learnable prompts.
Comput Biol Med. 2025 Mar;187:109725. doi: 10.1016/j.compbiomed.2025.109725. Epub 2025 Feb 5.
5
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13406. doi: 10.1117/12.3047410. Epub 2025 Apr 11.
6
Segment anything model for medical image analysis: An experimental study.
Med Image Anal. 2023 Oct;89:102918. doi: 10.1016/j.media.2023.102918. Epub 2023 Aug 2.
7
3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation.
Med Image Anal. 2024 Dec;98:103324. doi: 10.1016/j.media.2024.103324. Epub 2024 Aug 23.
8
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006867. Epub 2024 Apr 2.
10
PVPUFormer: Probabilistic Visual Prompt Unified Transformer for Interactive Image Segmentation.
IEEE Trans Image Process. 2024;33:6455-6468. doi: 10.1109/TIP.2024.3492713. Epub 2024 Nov 15.

引用本文的文献

1
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.
Proc SPIE Int Soc Opt Eng. 2025 Feb;13406. doi: 10.1117/12.3047410. Epub 2025 Apr 11.
2
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.
Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.

本文引用的文献

1
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635207. Epub 2024 Aug 22.
2
SimpleClick: Interactive Image Segmentation with Simple Vision Transformers.
Proc IEEE Int Conf Comput Vis. 2023 Oct;2023:22233-22243. doi: 10.1109/iccv51070.2023.02037.
3
3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation.
Med Image Anal. 2024 Dec;98:103324. doi: 10.1016/j.media.2024.103324. Epub 2024 Aug 23.
4
MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation.
Med Image Anal. 2024 Dec;98:103310. doi: 10.1016/j.media.2024.103310. Epub 2024 Aug 22.
5
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006867. Epub 2024 Apr 2.
6
Segment anything in medical images.
Nat Commun. 2024 Jan 22;15(1):654. doi: 10.1038/s41467-024-44824-z.
7
The Liver Tumor Segmentation Benchmark (LiTS).
Med Image Anal. 2023 Feb;84:102680. doi: 10.1016/j.media.2022.102680. Epub 2022 Nov 17.
8
Predictive uncertainty estimation for out-of-distribution detection in digital pathology.
Med Image Anal. 2023 Jan;83:102655. doi: 10.1016/j.media.2022.102655. Epub 2022 Oct 17.
9
The Medical Segmentation Decathlon.
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
10
MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning.
Med Image Anal. 2021 Aug;72:102102. doi: 10.1016/j.media.2021.102102. Epub 2021 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验