Suppr超能文献

构建模型,提升能力:关于用于艾滋病预防的参与式机器学习的综述

Building models, building capacity: A review of participatory machine learning for HIV prevention.

作者信息

Sendak Mark, Young Meg, Kim Jee Young, Hasan Alifia, Kelsey Clare, O'Neal Catherine, Jagneaux Tonya, Wilbright Wayne, Couk John, Lim Stephen, Davenport Tamachia, Lolis Shirley, Thomas Jennifer, Widman Shannon, Balu Suresh, Clement Meredith, Okeke Lance

机构信息

Duke Institute for Health Innovation, Durham, North Carolina, United States of America.

Data and Society Research Institute, New York, New York, United States of America.

出版信息

PLOS Glob Public Health. 2025 Jun 4;5(6):e0003862. doi: 10.1371/journal.pgph.0003862. eCollection 2025.

Abstract

A growing number of researchers and practitioners are embracing a "participatory turn" in machine learning (ML) to improve model development, prevent harm, and provide communities more influence over systems that impact them. In this paper, we explore the intersection of participatory practices in healthcare and the emerging focus on responsible AI with a focus on human immunodeficiency virus (HIV) care. We review the historical context of participation in HIV treatment and prevention, emphasizing how patient activism has shaped practices in this field. We then review participatory ML in HIV prevention and present a brief case study of a project designed to identify candidates for pre-exposure prophylaxis (PrEP) in Louisiana. The review highlights the essential steps in conducting participatory ML. Finally, we draw lessons for future participatory ML projects, underscoring the importance of long-term collaboration, responsiveness to partner feedback, and the crucial role of capacity-building for individuals and organizations. Effective participation requires substantial resources and investment, which supports overall project goals beyond mere improvements in model performance. We also draw lessons for advancing the participatory ML field, including (1) the impact of funding mandates on fostering effective engagement; (2) the need to scale participatory processes rather than just technologies; and (3) the need for genuine participation to allow flexibility in project plans, timelines, and shifts in institutional power dynamics.

摘要

越来越多的研究人员和从业者正在机器学习(ML)领域迎来“参与式转向”,以改进模型开发、预防危害,并让社区对影响自身的系统拥有更大影响力。在本文中,我们探讨医疗保健领域的参与式实践与新兴的负责任人工智能关注点的交叉点,重点关注人类免疫缺陷病毒(HIV)护理。我们回顾了HIV治疗和预防中参与的历史背景,强调患者行动主义如何塑造了该领域的实践。然后,我们回顾了HIV预防中的参与式机器学习,并展示了一个旨在识别路易斯安那州暴露前预防(PrEP)候选人的项目的简要案例研究。该综述突出了开展参与式机器学习的基本步骤。最后,我们为未来的参与式机器学习项目吸取经验教训,强调长期合作、对合作伙伴反馈的响应能力以及个人和组织能力建设的关键作用的重要性。有效的参与需要大量资源和投资,这支持了超越单纯模型性能提升的总体项目目标。我们还为推进参与式机器学习领域吸取经验教训,包括(1)资金授权对促进有效参与的影响;(2)扩大参与式流程而非仅技术的必要性;以及(3)真正参与以允许项目计划、时间表和机构权力动态变化具有灵活性的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/060c/12136320/dd35e4d9a7f4/pgph.0003862.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验