Xu Changjian, Li Yingyun, Li Ruizhu, Gao Na, Du Xian-Long, Li Tao, Wang Jian-Qiang, Xiao Guoping
Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China.
J Colloid Interface Sci. 2025 Nov 15;698:138013. doi: 10.1016/j.jcis.2025.138013. Epub 2025 May 27.
The electrochemical carbon dioxide reduction reaction (CORR) offers a promising approach to convert CO into high-value chemical while mitigating emission and utilizing of carbon resources efficiently. In this paper, we presented an effective approach using bismuth sulfide (BiS) catalyst for CORR, achieving selective and stable formic acid (HCOOH). Over a broad voltage range -0.6 to -1.4 V vs. reversible hydrogen electrode (RHE), the Faraday efficiency (FE) of HCOOH remained consistently above 95 %, with a peak FE of 96 % at -1.3 V vs. RHE, accompanied by a peak partial current density (j) of -304 mA/cm. Stability tests demonstrated a minimal FE decline and only a 7 % drop in current density after 10 h, attributed to inevitable flushing effects in the flow-cell. Under hydrothermal synthesis conditions, systematic investigations revealed that increased temperature and optimized sulfur content induced a morphological transformation from nanorods to nanosheets, as observed via electron microscopy. This structural evolution enhanced both FE and stability across a broad voltage range. In-situ spectroscopy and experimental analysis further indicated that sulfur doping modulated the electronic structure of bismuth, promoting the formation of the key intermediate HCOO* and facilitating HCOOH production. This work demonstrates an efficient and durable electrocatalyst for sustainable HCOOH synthesis.
电化学二氧化碳还原反应(CORR)为将二氧化碳转化为高价值化学品提供了一种很有前景的方法,同时可减少排放并有效利用碳资源。在本文中,我们提出了一种使用硫化铋(BiS)催化剂进行CORR的有效方法,可实现选择性且稳定地生成甲酸(HCOOH)。在相对于可逆氢电极(RHE)为 -0.6至 -1.4 V的宽电压范围内,HCOOH的法拉第效率(FE)始终保持在95%以上,在相对于RHE为 -1.3 V时FE峰值为96%,同时伴有 -304 mA/cm的峰值分电流密度(j)。稳定性测试表明,10小时后FE下降极小,电流密度仅下降7%,这归因于流动池中不可避免的冲洗效应。在水热合成条件下,系统研究表明,温度升高和硫含量优化会导致形态从纳米棒转变为纳米片,这通过电子显微镜观察到。这种结构演变在宽电压范围内提高了FE和稳定性。原位光谱和实验分析进一步表明,硫掺杂调节了铋的电子结构,促进了关键中间体HCOO*的形成并有助于HCOOH的生成。这项工作展示了一种用于可持续合成HCOOH的高效且耐用的电催化剂。