Zhang Tianyu, Wang Weibo, Liu Wenxian, Guo Zhengxiao, Liu Junfeng
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Hong Kong Quantum AI Lab, AIR@InnoHK of Hong Kong Government, Hong Kong SAR, 999077, China.
Nat Commun. 2025 Jun 5;16(1):5240. doi: 10.1038/s41467-025-60467-0.
Reconstruction of metal-organic frameworks often occurs under reaction conditions, thereby impeding true active species identification and hindering mechanism understanding. Herein, we present the mechanistic insight underlying the electrochemical synthesis of deprotonated anion of HO (HO) via 2e oxygen reduction by ultrathin Ni-benzenedicarboxylic acid (NiBDC), guided by its thickness-dependent performance and pH-induced reconstruction behavior. The real active species are identified as alkaline-reconstructed β-Ni(OH) that is chemically coupled with 1,4-benzenedicarboxylic acid residual ligand. The hybrid catalyst is characterized to exhibit an optimized surface electronic structure, which improves the intrinsic activity and selectivity. Operando characterization and theoretical simulations further reveal that the residual ligand functionalization significantly boosts the formation and facilitates the adequate binding of *OOH intermediates. Thus, the ligand-functionalized Ni(OH) exhibits high HO selectivity (>90%) in 0.1 M KOH across a broad current density up to 200 mA cm. Moreover, high HO production rate of 13.7 mol g h with significant accumulation of 2.0 wt.% HO under alkaline conditions is achieved at 200 mA cm over 100 h, suggesting the promising potential for large-scale electrosynthesis of HO in industrial applications.
金属有机框架的重构通常在反应条件下发生,从而阻碍了对真正活性物种的识别并妨碍了对反应机理的理解。在此,我们基于超薄镍-苯二甲酸(NiBDC)通过2e氧还原电化学合成去质子化的HO阴离子(HO)的厚度依赖性性能和pH诱导的重构行为,揭示了其潜在的反应机理。确定真正的活性物种为与1,4-苯二甲酸残留配体化学偶联的碱性重构β-Ni(OH)。该复合催化剂具有优化的表面电子结构,提高了本征活性和选择性。原位表征和理论模拟进一步表明,残留配体功能化显著促进了*OOH中间体的形成并有利于其充分结合。因此,配体功能化的Ni(OH)在0.1 M KOH中,在高达200 mA cm的宽电流密度范围内表现出高HO选择性(>90%)。此外,在200 mA cm下,经过100 h,在碱性条件下实现了13.7 mol g h的高HO生成速率以及2.0 wt.% HO的显著积累,这表明在工业应用中大规模电合成HO具有广阔的前景。