Verginelli Iason, Lahvis Matthew A, Jourabchi Parisa, DeVaull George E
Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.
Equilon Enterprises LLC doing Business as Shell Oil Products US, Houston, TX, USA.
Environ Pollut. 2025 Sep 15;381:126623. doi: 10.1016/j.envpol.2025.126623. Epub 2025 Jun 4.
This study presents a novel method that relies on the methane gradient in soil gas for estimating natural source zone depletion (NSZD) rates of light non-aqueous phase liquids (LNAPL) in the subsurface. Methane generation via methanogenesis at the LNAPL source, followed by methane oxidation in the unsaturated zone, is typically the rate-limiting degradation pathway and can, therefore, serve as a reliable indicator for NSZD rate estimation of bulk LNAPL. Considering that methanogenesis associated with natural soil respiration processes is often negligible, this method can be used to directly convert methane fluxes into NSZD rates. Unlike other methods that focus on O, CO or volatile organic compounds (VOCs), this approach is based on an analytical model that incorporates both diffusion and advection-driven transport of methane in soil gas. The application of this model supports the general assumption that diffusion dominates methane transport in the air-connected vadose zone, except in scenarios with high-pressure gradients (e.g., 10 Pa/m) and high soil permeability (e.g., sandy soils), where advection becomes significant relative to diffusion. Additionally, the analysis shows that the overall methane velocity in the aerobic oxidation zone, in most cases, falls within the range of 0.1-1 m/d. By multiplying this velocity by the maximum methane concentration in soil gas and the stoichiometric coefficient of the reference hydrocarbon compound (e.g., 1.14 g/g for octane), a reliable estimate of the NSZD rate can be derived. When applied to typical soil gas concentrations, this methane gradient method yields NSZD estimates consistent with values reported in the literature, validating its use as a simplified screening approach.
本研究提出了一种新方法,该方法依靠土壤气体中的甲烷梯度来估算地下轻质非水相液体(LNAPL)的自然源区耗竭(NSZD)速率。在LNAPL源处通过甲烷生成作用产生甲烷,随后在非饱和带中进行甲烷氧化,这通常是限速降解途径,因此可作为估算大量LNAPL的NSZD速率的可靠指标。考虑到与自然土壤呼吸过程相关的甲烷生成作用通常可忽略不计,该方法可用于直接将甲烷通量转换为NSZD速率。与其他关注氧气、二氧化碳或挥发性有机化合物(VOCs)的方法不同,此方法基于一个分析模型,该模型纳入了土壤气体中甲烷的扩散和平流驱动传输。该模型的应用支持了一般假设,即在与空气连通的渗流带中,除了在高压梯度(例如10 Pa/m)和高土壤渗透率(例如砂土)的情况下,扩散主导甲烷传输,在这种情况下平流相对于扩散变得显著。此外,分析表明,在大多数情况下,好氧氧化带中的总甲烷速度在0.1 - 1 m/d范围内。通过将该速度乘以土壤气体中的最大甲烷浓度和参考烃类化合物的化学计量系数(例如辛烷为1.14 g/g),可以得出NSZD速率的可靠估计值。当应用于典型的土壤气体浓度时,这种甲烷梯度方法得出的NSZD估计值与文献报道的值一致,验证了其作为一种简化筛选方法的用途。