McSweeney-Davis Alex, Fang Chengran, Caruyer Emmanuel, Kerbrat Anne, Li Jing-Rebecca
Inria-Saclay, Équipe Idefix ENSTA Paris, UMA, 828 Boulevard des Maréchaux, 91762 Palaiseau, France.
Empenn Research Team - IRISA Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042 Rennes cedex, France.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf258.
In recent years, there has been a significant increase in publicly available skeleton descriptions of real brain cells from laboratories all over the world. In theory, this should make it is possible to perform large-scale realistic simulations on brain cells. However, currently there is still a gap between the skeleton descriptions and high-quality simulation-ready surface and volume meshes of brain cells. We propose and implement a tool called Alpha_Mesh_Swc (AMS) to generate automatically and efficiently triangular surface meshes that are optimized for finite element simulations. We use an Alpha Wrapping method with an offset parameter on component surface meshes to efficiently generate a global watertight mesh. Then mesh simplification and re-meshing are used to produce an optimal surface mesh. Our methodology limits the number of surface triangles, while preserving geometrical accuracy, permit cutting, and gluing of cell components, is robust to imperfect skeleton descriptions and allows mixed cell descriptions (surface meshes combined with skeletons). We compared the robustness, performance and accuracy of AMS against existing tools and found significant improvement in terms of mesh accuracy. We show, on average, we can generate fully automatically a brain cell (neurons or glia) surface mesh in a couple of minutes on a laptop computer resulting in a simplified surface mesh with only around 10k nodes. The resulting meshes were used to perform diffusion MRI simulations in neurons and microglia. The code and a number of sample brain cell surface meshes have been made publicly available.
近年来,全球各地实验室公开提供的真实脑细胞骨架描述显著增加。理论上,这应该使得对脑细胞进行大规模逼真模拟成为可能。然而,目前骨架描述与高质量的、可用于模拟的脑细胞表面和体网格之间仍存在差距。我们提出并实现了一种名为Alpha_Mesh_Swc(AMS)的工具,用于自动高效地生成针对有限元模拟进行优化的三角形表面网格。我们在组件表面网格上使用带有偏移参数的Alpha包裹方法,以高效生成全局水密网格。然后,通过网格简化和重新网格化来生成最优表面网格。我们的方法限制了表面三角形的数量,同时保持几何精度,允许细胞组件的切割和粘贴,对不完美的骨架描述具有鲁棒性,并允许混合细胞描述(表面网格与骨架相结合)。我们将AMS与现有工具在鲁棒性、性能和准确性方面进行了比较,发现其在网格精度方面有显著提升。我们展示了,平均而言,在笔记本电脑上只需几分钟就能完全自动生成一个脑细胞(神经元或神经胶质细胞)的表面网格,得到一个简化的表面网格,节点数量仅约为10000个。生成的网格用于在神经元和小胶质细胞中进行扩散磁共振成像模拟。代码和许多样本脑细胞表面网格已公开提供。