Suppr超能文献

HEDL:使用讽刺文本的深度学习多种方法用于抑郁症的早期检测。

HEDL: Deep learning multiple approaches for early detection of depression using sarcastic text.

作者信息

Kshirsagar Vanita, Pachpor Nishant, Brahme Ashwini, Aapre Ravindra, Suryawanshi Shubhangi, Bhosale Digvijay

机构信息

Dr. D. Y. Patil Institute of Technology, India.

International Institute of Management Science, India.

出版信息

MethodsX. 2025 May 14;14:103370. doi: 10.1016/j.mex.2025.103370. eCollection 2025 Jun.

Abstract

Sarcasm is particularly notorious towards mental health, and thus it is quite essential for early identification of depressive indicators. This paper introduces the Hybrid Ensemble Deep Learning model as novel for the task of the detection of sarcasm task, targeting the weaknesses which were found in traditional approaches of SVC, DT, RF, and LR by using unique combinations of CNN, LSTM, and GRU to capture the sarcasm patterns that appear fine feature representation and enhanced robustness and accuracy. Our model uniquely integrates the architectures of CNN, LSTM, and GRU into one framework for capturing more complex patterns in feature representation, accuracy, and robustness. We tested it on a news headline dataset; HEDL gained 84 % accuracy along with marked reduction in false positives compared to baseline models, which improved the accuracy as well as the recall. Results of the experiment do support that the HEDL model is indeed much more accurate and reliable sarcastic detection methodology; it can have applications such as monitoring mental health or analysing sentiment.•Proposed the Hybrid Ensemble Deep Learning Algorithm (HEDL) for text data.•The proposed model outperforms traditional models in cognitive skill impairment detection.•Demonstrated scalability for diverse healthcare datasets.

摘要

讽刺对心理健康尤其有害,因此早期识别抑郁指标至关重要。本文介绍了一种混合集成深度学习模型,该模型针对讽刺检测任务具有创新性,通过使用卷积神经网络(CNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)的独特组合来捕捉讽刺模式,以克服支持向量机(SVC)、决策树(DT)、随机森林(RF)和逻辑回归(LR)等传统方法中发现的弱点,从而实现良好的特征表示、增强的鲁棒性和准确性。我们的模型将CNN、LSTM和GRU的架构独特地集成到一个框架中,以在特征表示、准确性和鲁棒性方面捕捉更复杂的模式。我们在一个新闻标题数据集上对其进行了测试;与基线模型相比,混合集成深度学习(HEDL)模型的准确率达到了84%,同时误报率显著降低,这提高了准确率和召回率。实验结果确实支持HEDL模型是一种更准确、可靠的讽刺检测方法;它可应用于监测心理健康或分析情绪等领域。

  • 提出了用于文本数据的混合集成深度学习算法(HEDL)。

  • 所提出的模型在认知技能损害检测方面优于传统模型。

  • 展示了对不同医疗数据集的可扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验