Suppr超能文献

通过智能手机和智能手表收集的自我监测数据与成年抑郁症患者个体疾病轨迹之间的联系:一项为期一年的观察性试验研究方案。

Links between self-monitoring data collected through smartphones and smartwatches and the individual disease trajectories of adult patients with depressive disorders: Study protocol of a one-year observational trial.

作者信息

Reich Hanna, Schreynemackers Simon, Amin Rebeka, Ludwig Sascha, Zippelius Jil, Leimhofer Johannes, Dunker Tobias, Schriewer Elisabeth, Carell Angela, Weber Yvonne, Hegerl Ulrich

机构信息

Research Centre of the German Foundation for Depression and Suicide Prevention, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany.

German Foundation for Depression and Suicide Prevention, Goerdelerring 9, 04109, Leipzig, Germany.

出版信息

Contemp Clin Trials Commun. 2025 May 10;45:101492. doi: 10.1016/j.conctc.2025.101492. eCollection 2025 Jun.

Abstract

Depression is highly recurrent and heterogenous in its individual course, requiring a personalized treatment approach. Patients today can collect large volumes of personal data via smartphones and smartwatches and may utilize them for their treatment and self-management. We aim to provide proof-of-concept that these data can (i) serve as an objective marker of and (ii) predict the daily and weekly self-reported depression severity within individuals with depressive disorders. In this exploratory study, 15 adult patients with depressive disorders will collect self-report and biosensor data over the course of one year. Participants will (a) attend three in-person appointments (at baseline, 6 months, and 12 months), (b) self-report daily and weekly depressive symptoms, (c) continuously collect sensor data via the "iTrackDepression" app on their Android smartphone (app usage, phone calls, phonetic parameters from voice recordings), and (d) wear a Samsung Galaxy Watch 5® to record data from the accelerometer, step sensor, light sensor, and heart rate sensor. We will apply multilevel correlations, vector-autoregressive models, and Machine Learning approaches to identify individual patterns in the data, particularly in the relationships between biosensor data and self-reported depressive symptoms. Enhancing the understanding of individual disease trajectories through data from smartphones and smartwatches could allow for classical, digital, and self-management interventions for depression to be delivered in a manner and at a time specifically tailored to the individual's needs. Clinical trial registration number: DRKS00032618 (https://drks.de/search/en/trial/DRKS00032618).

摘要

抑郁症具有高度复发性,且个体病程各异,需要个性化的治疗方法。如今,患者可以通过智能手机和智能手表收集大量个人数据,并将其用于治疗和自我管理。我们旨在提供概念验证,证明这些数据能够(i)作为抑郁症患者每日和每周自我报告的抑郁严重程度的客观指标,以及(ii)对其进行预测。在这项探索性研究中,15名成年抑郁症患者将在一年时间内收集自我报告和生物传感器数据。参与者将(a)参加三次面对面预约(基线时、6个月时和12个月时),(b)每日和每周自我报告抑郁症状,(c)通过其安卓智能手机上的“iTrackDepression”应用程序持续收集传感器数据(应用程序使用情况、电话通话、语音记录中的语音参数),以及(d)佩戴三星Galaxy Watch 5®记录来自加速度计、步数传感器、光线传感器和心率传感器的数据。我们将应用多级相关性、向量自回归模型和机器学习方法来识别数据中的个体模式,特别是生物传感器数据与自我报告的抑郁症状之间的关系。通过智能手机和智能手表的数据增强对个体疾病轨迹的理解,可以使抑郁症的传统、数字和自我管理干预措施以专门针对个体需求的方式和时间提供。临床试验注册号:DRKS00032618(https://drks.de/search/en/trial/DRKS00032618)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b46c/12148402/cdb925a934d9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验