Liu Shiqi, Chen Tingwei, Wu Baochun, Fan Haodong, Zhu Yingmei, Bi Sheng, Liu Yuntian, Shi Yinuo, Zhang Wenbiao, Wang Mengxi, Li Qiang, Yang Jie, Lu Jing, Zhou Tiejun, Liu Bo
State Key Laboratory of Spintronic Devices and Technologies, Hangzhou, 311305, P. R. China.
State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, P. R. China.
Adv Sci (Weinh). 2025 Aug;12(32):e02985. doi: 10.1002/advs.202502985. Epub 2025 Jun 10.
Antiferromagnets have attracted widespread interest due to the advantages of no stray fields and ultrafast switching dynamics, promising for next-generation high-speed, high-density memories. However, over a long period, the effective detection of antiferromagnetic (AFM) orders remained being one of the greatest challenges of its application in magnetic random access memories (MRAM) because of its zero net magnetization. Recently, the preliminary demonstration of the tunneling magnetoresistance ratio(TMR) in antiferromagnetic tunnel junctions (AFMTJ) offered a feasible solution. Here, a MnSnN/SrTiO/MnSnN non-collinear AFMTJ is designed and its transport properties are predicted by ab initio quantum transport simulations. Due to the momentum matching between the spin-polarized Fermi surface of the MnSnN electrode and the low-decay-rate evanescent states of the SrTiO barrier, a remarkable TMR ≈1500% is generated, corresponding to a large device read margin, resulting in higher storage density. In addition, changing the relative orientation of two MnSnN magnetic orders leads to four non-volatile resistance states with a low resistance area (RA) of only 0.07-1.25 Ω•µm and three multi-state TMR of ≈500, 1000, and 1500%, suitable for high-energy-efficiency multiple-state memory application. Our work provides a promising device structure for future nonvolatile high-speed, high-density, and multiple-state AFM memories.
反铁磁体因其无杂散场和超快开关动力学的优点而引起了广泛关注,有望用于下一代高速、高密度存储器。然而,长期以来,由于其净磁化强度为零,有效检测反铁磁(AFM)序一直是其在磁性随机存取存储器(MRAM)中应用的最大挑战之一。最近,反铁磁隧道结(AFMTJ)中隧穿磁电阻比(TMR)的初步证明提供了一种可行的解决方案。在此,设计了一种MnSnN/SrTiO/MnSnN非共线AFMTJ,并通过从头算量子输运模拟预测了其输运性质。由于MnSnN电极的自旋极化费米面与SrTiO势垒的低衰减率倏逝态之间的动量匹配,产生了显著的TMR≈1500%,对应于较大的器件读取裕度,从而实现了更高的存储密度。此外,改变两个MnSnN磁序的相对取向会导致四个非易失性电阻状态,其低电阻面积(RA)仅为0.07-1.25Ω•µm,以及三个多态TMR,分别约为500%、1000%和1500%,适用于高能效多态存储器应用。我们的工作为未来的非易失性高速、高密度和多态AFM存储器提供了一种有前景的器件结构。