Suppr超能文献

探索密度泛函理论在靶向给药金纳米颗粒设计中的作用:一项系统综述。

Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review.

作者信息

Obijiofor Obiekezie C, Novikov Alexander S

机构信息

Infochemistry Scientific Center, ITMO University, St. Petersburg, 191002, Russia.

Institute of Chemistry, Saint Petersburg State University, St. Petersburg, 199034, Russia.

出版信息

J Mol Model. 2025 Jun 10;31(7):186. doi: 10.1007/s00894-025-06405-9.

Abstract

CONTEXT

Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory's (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a - 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum-mechanical accuracy, reducing computational costs from ~ 10 to ~ 10 CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine.

METHODS

This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 10 atoms with ~ 0.2 eV accuracy.

摘要

背景

利用金纳米颗粒(AuNP)的靶向给药系统需要精确的原子级设计,以克服目前在药物负载效率和控释方面的局限性。与以往的重点综述不同,本系统分析比较了密度泛函理论(DFT)在多个AuNP设计挑战中的性能,包括药物相互作用、表面功能化和刺激响应行为。DFT预测结合能的精度约为0.1 eV,并阐明AuNP-药物复合物的电子性质,这对优化药物递送至关重要。例如,B3LYP-D3/LANL2DZ计算预测硫代阿比特龙的结合能为-0.58 eV,确保通过硫-金键实现稳定的化学吸附,这已通过实验结合测定得到验证。然而,高计算成本限制了其在大型生物分子系统中的应用。新兴的混合机器学习(ML)/DFT方法在保持量子力学精度的同时解决了可扩展性问题,将50 nm AuNP的计算成本从约10 CPU小时降低到约10 CPU小时,使混合ML/DFT成为下一代纳米医学的变革性方法。

方法

本系统评估涵盖了DFT方法,包括梯度校正(PBE)、杂化(B3LYP)和元广义梯度近似(M06-L)泛函,对Au原子使用相对论基组(如LANL2DZ),对有机配体使用极化基组(如6-31G(d))。通过隐式(SMD)或显式方法对溶剂效应进行建模。含时DFT(TD-DFT)分析局域表面等离子体共振和前沿分子轨道。多尺度方法将DFT与分子动力学(MD)和机器学习原子间势(MLIPs)相结合,以对扩展系统进行建模,从而能够以约0.2 eV的精度模拟高达10个原子的系统中的AuNP-蛋白质相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验