Suppr超能文献

SEEDNet:用于网络分析的无协变量多国家社区层面流行病学估计数据集。

SEEDNet: Covariate-free multi-country settlement-level epidemiological estimates datasets for network analysis.

作者信息

Darooneh Amir Hossein, Kortenaar Jean-Luc, Goulart Céline M, McLaughlin Katie, Cornelius Sean P, Bassani Diego G

机构信息

Centre for Global Child Health, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.

Department of Physics, University of Zanjan, Zanjan, 45371-38791, Iran.

出版信息

Sci Data. 2025 Jun 10;12(1):975. doi: 10.1038/s41597-025-05143-0.

Abstract

The study of population health through network science is promising but suitable population health datasets covering low- and middle-income countries (LMICs) are not available. Covariate-based methods used to produce small-area estimates (SAEs) combine national health surveys with covariates from varied sources through various methods limiting their use for producing network representations of populations by injecting unquantifiable uncertainty into estimates of node attributes, affecting the comparability of representations across countries and time. Here, we present SEEDNet (Settlement-level Epidemiological Estimates Datasets for Network Analysis), a multi-country data library of population health indicators across human settlements. Our datasets are produced through a covariate-free method that uses georeferenced national surveys to produce SAEs of health indicators and include complete mapping of population settlements of all sizes. Our open-access library is intended to be used as the basis for network representations of population health in LMICs. Novel aspects include automated estimation process, harmonized data inputs, complete settlement mapping and the adoption of settlements as the functional units for network-based analysis of epidemiological data.

摘要

通过网络科学研究人群健康前景广阔,但缺乏适用于低收入和中等收入国家(LMICs)的人群健康数据集。用于生成小区域估计值(SAEs)的基于协变量的方法,通过各种方法将国家健康调查与来自不同来源的协变量相结合,这限制了它们用于生成人群网络表示的能力,因为这些方法会在节点属性估计中引入无法量化的不确定性,影响不同国家和不同时间表示的可比性。在此,我们展示了SEEDNet(用于网络分析的定居点层面流行病学估计数据集),这是一个跨人类住区的多国人群健康指标数据库。我们的数据集是通过一种无协变量的方法生成的,该方法使用地理参考的国家调查来生成健康指标的小区域估计值,并包括所有规模人口定居点的完整地图。我们的开放获取库旨在用作LMICs人群健康网络表示的基础。新的方面包括自动化估计过程、统一的数据输入、完整的定居点地图绘制以及采用定居点作为基于网络的流行病学数据分析的功能单元。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b296/12152140/07942cc4f9ff/41597_2025_5143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验