Wu Yang, Chen Bei, Chen Xia, Zhu Guoqiang, Du Wei, Qing Liming, Wu Panfeng, Wang Zhenxing, Tang Juyu, Xie Hui
Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Bioact Mater. 2025 May 21;51:450-468. doi: 10.1016/j.bioactmat.2025.04.014. eCollection 2025 Sep.
Osteomyelitis caused by methicillin-resistant (MRSA) biofilms poses a major therapeutic challenge due to persistent infection and bone loss. Optimizing anti-infection and promoting bone repair are the main goals to improve the efficiency of osteomyelitis treatment. Herein, we present an ultrasound (US)-actived Cu-BTO@Gua composite piezoelectric sonosensitizer, created by conjugating guanidine (Gua) groups, a component that permeates the biofilm matrix, onto US-absorbing Cu-doped barium titanate (BTO). The guanidine groups demonstrate strong affinity for matrices abundant in negatively charged components, facilitating deeper biofilm penetration. Cu doping not only amplifies the piezoelectric effect, but also introduces abundant oxygen vacancies to suppress electron-hole pair recombination. Under US irradiation, the nanocomposite catalyzes the substrate to produce toxic ROS in the acidic infection microenvironment, while Cu depletes glutathione to aggravate oxidative stress, leading to bacterial toxin inactivation, biofilm disintegration, and bacterial death. Additionally, Cu-BTO@Gua promotes the polarization of M1 macrophages to the M2 phenotype by inhibiting nuclear factor-κB, which subsequently activates the transforming growth factor β (TGF-β) signaling pathway to support osteogenesis. This dual-action approach offers a promising strategy for improving clinical outcomes of complex bone infections.
耐甲氧西林金黄色葡萄球菌(MRSA)生物膜引起的骨髓炎由于持续感染和骨质流失而构成重大治疗挑战。优化抗感染和促进骨修复是提高骨髓炎治疗效率的主要目标。在此,我们展示了一种超声(US)激活的Cu-BTO@Gua复合压电声敏剂,它是通过将胍(Gua)基团(一种可渗透生物膜基质的成分)与吸收超声的掺铜钛酸钡(BTO)结合而制成的。胍基团对富含带负电荷成分的基质表现出很强的亲和力,有助于更深地穿透生物膜。铜掺杂不仅增强了压电效应,还引入了大量氧空位以抑制电子-空穴对复合。在超声照射下,该纳米复合材料在酸性感染微环境中催化底物产生有毒的活性氧,同时铜消耗谷胱甘肽以加重氧化应激,导致细菌毒素失活、生物膜解体和细菌死亡。此外,Cu-BTO@Gua通过抑制核因子-κB促进M1巨噬细胞向M2表型极化,随后激活转化生长因子β(TGF-β)信号通路以支持骨生成。这种双重作用方法为改善复杂骨感染的临床结果提供了一种有前景的策略。