Autio Joonas A, Kimura Ikko, Ose Takayuki, Matsumoto Yuki, Ohno Masahiro, Urushibata Yuta, Ikeda Takuro, Glasser Matthew F, van Essen David C, Hayashi Takuya
Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Department of Radiology, Washington University in St. Louis, St. Louis, United States.
Elife. 2025 Jun 11;13:RP99940. doi: 10.7554/eLife.99940.
Mapping the vascular organization of the brain is of great importance across various domains of basic neuroimaging research, diagnostic radiology, and neurology. However, the intricate task of precisely mapping vasculature across brain regions and cortical layers presents formidable challenges, resulting in a limited understanding of neurometabolic factors influencing the brain's microvasculature. Addressing this gap, our study investigates whole-brain vascular volume using ferumoxytol-weighted laminar-resolution multi-echo gradient-echo imaging in macaque monkeys. We validate the results with published data for vascular densities and compare them with cytoarchitecture, neuron and synaptic densities. The ferumoxytol-induced change in transverse relaxation rate (ΔR*), an indirect proxy measure of cerebral blood volume (CBV), was mapped onto 12 equivolumetric laminar cortical surfaces. Our findings reveal that CBV varies threefold across the brain, with the highest vascular volume observed in the inferior colliculus and lowest in the corpus callosum. In the cerebral cortex, CBV is notably high in early primary sensory areas and low in association areas responsible for higher cognitive functions. Classification of CBV into distinct groups unveils extensive replication of translaminar vascular network motifs, suggesting distinct computational energy supply requirements in areas with varying cytoarchitecture types. Regionally, baseline R* and CBV exhibit positive correlations with neuron density and negative correlations with receptor densities. Adjusting image resolution based on the critical sampling frequency of penetrating cortical vessels allows us to delineate approximately 30% of the arterial-venous vessels. Collectively, these results mark significant methodological and conceptual advancements, contributing to the refinement of cerebrovascular MRI. Furthermore, our study establishes a linkage between neurometabolic factors and the vascular network architecture in the primate brain.
绘制大脑血管组织图在基础神经影像学研究、诊断放射学和神经病学等各个领域都具有极其重要的意义。然而,精确绘制跨脑区和皮质层的血管系统这一复杂任务面临着巨大挑战,导致我们对影响大脑微血管系统的神经代谢因素的了解有限。为填补这一空白,我们的研究使用菲洛多酸加权层分辨率多回波梯度回波成像技术,对猕猴的全脑血管体积进行了研究。我们用已发表的血管密度数据验证了结果,并将其与细胞结构、神经元和突触密度进行了比较。将菲洛多酸引起的横向弛豫率变化(ΔR*)(脑血容量(CBV)的间接替代指标)映射到12个等体积的层状皮质表面。我们的研究结果表明,CBV在全脑范围内变化三倍,在下丘脑中观察到的血管体积最高,在胼胝体中最低。在大脑皮层中,早期初级感觉区域的CBV明显较高,而负责更高认知功能的联合区域的CBV较低。将CBV分类为不同组揭示了跨层血管网络模式的广泛重复,表明在具有不同细胞结构类型的区域存在不同的计算能量供应需求。在区域上,基线R*和CBV与神经元密度呈正相关,与受体密度呈负相关。根据穿透皮质血管的临界采样频率调整图像分辨率,使我们能够勾勒出大约30%的动静脉血管。总的来说,这些结果标志着重大的方法学和概念性进展,有助于改进脑血管MRI。此外,我们的研究在灵长类动物大脑中建立了神经代谢因素与血管网络结构之间的联系。