Kamboj Ocima, Park Jeongbin, Stegle Oliver, Hamprecht Fred A
IWR, Heidelberg University, Heidelberg, Germany.
School of Biomedical Convergence Engineering, Pusan National University, Yangsan, Korea.
PLoS One. 2025 Jun 12;20(6):e0311458. doi: 10.1371/journal.pone.0311458. eCollection 2025.
Imaging-based Spatial Transcriptomics methods enable the study of gene expression and regulation in complex tissues at subcellular resolution. However, inaccurate cell segmentation procedures lead to misassignment of mRNAs to individual cells which can introduce errors in downstream analysis. Current methods estimate cell boundaries using auxiliary DAPI/Poly(A) stains. These stains can be difficult to segment, thus requiring manual tuning of the method, and not all mRNA molecules may be assigned to the correct cells. We describe a new method, based on mean shift, that segments the cells based on the spatial locations and the gene labels of the mRNA spots without requiring any auxiliary images. We evaluate the performance of BOMS across various publicly available datasets and demonstrate that it achieves comparable results to the best existing method while being simple to implement and significantly faster in execution. Open-source code is available at https://github.com/sciai-lab/boms.
基于成像的空间转录组学方法能够在亚细胞分辨率下研究复杂组织中的基因表达和调控。然而,不准确的细胞分割程序会导致mRNA错误地分配到单个细胞中,从而在下游分析中引入误差。目前的方法使用辅助DAPI/Poly(A)染色来估计细胞边界。这些染色可能难以分割,因此需要手动调整方法,而且并非所有mRNA分子都能被分配到正确的细胞中。我们描述了一种基于均值漂移的新方法,该方法基于mRNA斑点的空间位置和基因标签对细胞进行分割,无需任何辅助图像。我们在各种公开可用的数据集上评估了BOMS的性能,并证明它能取得与现有最佳方法相当的结果,同时易于实现且执行速度明显更快。开源代码可在https://github.com/sciai-lab/boms获取。