Suppr超能文献

双模态超声影像组学和栖息地分析增强了早期乳腺癌患者腋窝淋巴结负荷的术前预测。

Bi-modal ultrasound radiomics and habitat analysis enhanced the pre-operative prediction of axillary lymph node burden in patients with early-stage breast cancer.

作者信息

Xu Jing, Qi Pan, Ou Xiaoyan, Zhong Qiaoxin, Chen Zhen-Wen, Wang Yin, Yi Aijiao, Wang Bin

机构信息

Department of Medical Imaging, Yueyang Central Hospital, Yueyang, China.

Department of medical ultrasound, Yueyang Central Hospital, Yueyang, China.

出版信息

Front Oncol. 2025 May 29;15:1607442. doi: 10.3389/fonc.2025.1607442. eCollection 2025.

Abstract

OBJECTIVE

This study aimed to evaluate the value of habitat analysis based bi-modal ultrasound radiomics in predicting axillary lymph node (ALN) status in patients with early-stage breast cancer, and find a non-invasive and accurate method to predict ALN status.

MATERIALS AND METHODS

A total of 206 patients with 206 breast lesions were enrolled in this study from July 2019 to December 2023. All patients were randomly divided into training cohort (165 patients) and test cohort (41 patients). The feature extraction was manually delineated with ITK-SNAP software, while a K-means clustering algorithm was employed for the segmentation of sub-regions, with the number of clusters ranging from 2 to 10. Radiomic features were extracted separately from the subregions of B-mode ultrasound (BMUS) and shear wave elastography (SWE) images after habitat generation. These modality-specific features were then combined. Eleven machine learning models were used to build models, including support vector machines (SVM), k-nearest neighbor (KNN), RandomForest (RF), ExtraTrees, XGBoost, light gradient boosting machine (LGB), NaiveBayes, AdaBoost, GradientBoosting, LR and MLP. Prediction performance was compared among clinicopathological model, omics models and habitat models.

RESULTS

According to the habitat analysis results of K clustering for BMUS and SWE, the omics features of 4 subregions for BMUS images and the 5 subregions for SWE images were extracted respectively. Compared the prediction performance of the clinicopathologic (C) risk factors model, habitat and omics models in the test cohort, NaiveBayes model based on SWE habitat achieved the highest prediction performance with AUC of 0.953 (95% CI: 0.893, 1.000).

CONCLUSION

Habitat analysis based on ultrasound might be a potential method to visualize the intratumoral heterogeneity of breast lesions. The machine learning models based on SWE radiomics with habitat analysis could enhance the ability of prediction lymph node burden in patients with early-stage breast cancer, which could be a promising approach to make clinical decisions.

摘要

目的

本研究旨在评估基于栖息地分析的双模态超声放射组学在预测早期乳腺癌患者腋窝淋巴结(ALN)状态方面的价值,并寻找一种非侵入性且准确的方法来预测ALN状态。

材料与方法

2019年7月至2023年12月,本研究共纳入206例患有206个乳腺病变的患者。所有患者被随机分为训练队列(165例患者)和测试队列(41例患者)。使用ITK-SNAP软件手动勾勒特征提取,同时采用K均值聚类算法对亚区域进行分割,聚类数范围为2至10。在生成栖息地后,分别从B型超声(BMUS)和剪切波弹性成像(SWE)图像的亚区域中提取放射组学特征。然后将这些特定模态的特征进行组合。使用11种机器学习模型构建模型,包括支持向量机(SVM)、k近邻(KNN)、随机森林(RF)、极端随机树、XGBoost、轻梯度提升机(LGB)、朴素贝叶斯、AdaBoost、梯度提升、逻辑回归(LR)和多层感知器(MLP)。比较临床病理模型、组学模型和栖息地模型的预测性能。

结果

根据BMUS和SWE的K聚类栖息地分析结果,分别提取了BMUS图像4个亚区域和SWE图像5个亚区域的组学特征。在测试队列中比较临床病理(C)危险因素模型、栖息地模型和组学模型的预测性能,基于SWE栖息地的朴素贝叶斯模型预测性能最高,AUC为0.953(95%CI:0.893,1.000)。

结论

基于超声的栖息地分析可能是一种可视化乳腺病变瘤内异质性的潜在方法。基于SWE放射组学和栖息地分析的机器学习模型可以提高预测早期乳腺癌患者淋巴结负荷的能力,这可能是一种有前景的临床决策方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c121/12158749/aa67736c4a80/fonc-15-1607442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验