Zaoralová Dagmar, Langer Rostislav, Otyepka Michal
IT4Innovations, VSBTechnical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic.
Regional Centre of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
ACS Sustain Chem Eng. 2025 May 28;13(22):8319-8330. doi: 10.1021/acssuschemeng.5c01417. eCollection 2025 Jun 9.
The precise engineering of vacancies in nitrogen-doped graphene (NG) presents a promising strategy for stabilizing metal single-atom catalysts (SACs) and tuning their catalytic performance. We explore the role of vacancies in NG for stabilizing iron-based SACs (Fe-SACs) by using density functional theory (DFT). First, we examine the stability of various vacancy types in graphene and NG supports, addressing the question of preferential formation of specific structural defects as potential sites for metal binding. We reveal simple rules governing the stability of vacancies and show that nitrogen doping can bring about vacancy healing. We identify preferred binding sites for Fe atoms/ions, specifically single and double vacancies, and analyze how the nitrogen-doping pattern in a vacancy affects the interaction of Fe with the SAC support. The results show that the positions of nitrogen(s) and the local charge environment significantly influence the stability of the Fe-SACs. Notably, some Fe@NG configurations, although not the most thermodynamically stable, exhibit enhanced catalytic performance, particularly for a CO reduction reaction (CORR). These findings offer valuable insights into vacancy engineering as a strategy for designing high-performance Fe-SACs and emphasize the interplay among vacancy types, nitrogen concentration, and catalyst stability in driving the catalytic behavior.
在氮掺杂石墨烯(NG)中精确设计空位,为稳定金属单原子催化剂(SAC)并调节其催化性能提供了一种很有前景的策略。我们利用密度泛函理论(DFT)探究了NG中空位对稳定铁基SAC(Fe-SAC)的作用。首先,我们研究了石墨烯和NG载体中各种空位类型的稳定性,解决了特定结构缺陷作为金属结合潜在位点的优先形成问题。我们揭示了控制空位稳定性的简单规则,并表明氮掺杂可导致空位愈合。我们确定了Fe原子/离子的优先结合位点,特别是单空位和双空位,并分析了空位中的氮掺杂模式如何影响Fe与SAC载体的相互作用。结果表明,氮的位置和局部电荷环境显著影响Fe-SAC的稳定性。值得注意的是,一些Fe@NG构型虽然不是热力学上最稳定的,但表现出增强的催化性能,特别是对于一氧化碳还原反应(CORR)。这些发现为空位工程作为设计高性能Fe-SAC的策略提供了有价值的见解,并强调了空位类型、氮浓度和催化剂稳定性之间的相互作用对催化行为的驱动作用。