Cesario Matteo, Littlewood Simon J, Nadel James, Fletcher Thomas J, Fotaki Anastasia, Castillo-Passi Carlos, Hajhosseiny Reza, Pouliopoulos Jim, Jabbour Andrew, Olivero Ruperto, Rodríguez-Palomares Jose, Kooi M Eline, Prieto Claudia, Botnar René M
School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
J Cardiovasc Magn Reson. 2025 Jun 11;27(2):101923. doi: 10.1016/j.jocmr.2025.101923.
Magnetic resonance angiography (MRA) is an important tool for aortic assessment in several cardiovascular diseases. Assessment of MRA images relies on manual segmentation, a time-intensive process that is subject to operator variability. We aimed to optimize and validate two deep-learning models for automatic segmentation of the aortic lumen and vessel wall in high-resolution electrocardiogram-triggered free-breathing respiratory motion-corrected three-dimensional (3D) bright- and black-blood MRA images.
Manual segmentation, serving as the ground truth, was performed on 25 bright-blood and 15 black-blood 3D MRA image sets acquired with the iT2PrepIR-BOOST sequence (1.5T) in thoracic aortopathy patients. The training was performed with no new U-Net (nnUNet) for bright-blood (lumen) and black-blood image sets (lumen and vessel wall). Training consisted of a 70:20:10% (17/25:5/25:3/25 datasets) training:validation:testing split. Inference was run on datasets (single vendor) from different centers (UK, Spain, and Australia), sequences (iT2PrepIR-BOOST, T2 prepared coronary magnetic resonance angiography [CMRA], and time-resolved angiography with interleaved stochastic trajectories [TWIST] MRA), acquired resolutions (from 0.9-3 mm), and field strengths (0.55T, 1.5T, and 3T). Predictive measurements comprised Dice similarity coefficient (DSC) and Intersection over Union (IoU). Postprocessing (3D slicer) included centreline extraction, diameter measurement, and curved planar reformatting (CPR).
The optimal configuration was the 3D U-Net. Bright-blood segmentation at 1.5T on iT2PrepIR-BOOST datasets (1.3 and 1.8 mm) and 3D CMRA datasets (0.9 mm) resulted in DSC ≥ 0.96 and IoU ≥ 0.92. For bright-blood segmentation on 3D CMRA at 0.55T, the nnUNet achieved DSC and IoU scores of 0.93 and 0.88 at 1.5 mm³, and 0.68 and 0.52 at 3.0 mm³, respectively. DSC and IoU scores of 0.89 and 0.82 were obtained for CMRA image sets (1 mm) at 1.5T (Barcelona dataset). DSC and IoU scores of the BRnnUNet model were 0.90 and 0.82, respectively, for the contrast-enhanced dataset (TWIST MRA). Lumen segmentation on black-blood 1.5T iT2PrepIR-BOOST image sets achieved DSC ≥ 0.95 and IoU ≥ 0.90, and vessel wall segmentation resulted in DSC ≥ 0.80 and IoU ≥ 0.67. Automated centreline tracking, diameter measurement, and CPR were successfully implemented in all subjects.
Automated aortic lumen and wall segmentation on 3D bright- and black-blood image sets demonstrated excellent agreement with ground truth. This technique demonstrates a fast and comprehensive assessment of aortic morphology with great potential for future clinical application in various cardiovascular diseases.
磁共振血管造影(MRA)是评估多种心血管疾病主动脉的重要工具。MRA图像评估依赖手工分割,这是一个耗时的过程,且受操作者差异影响。我们旨在优化和验证两种深度学习模型,用于在高分辨率心电图触发的自由呼吸呼吸运动校正三维(3D)亮血和黑血MRA图像中自动分割主动脉管腔和血管壁。
在胸主动脉病变患者中,使用iT2PrepIR - BOOST序列(1.5T)采集的25套亮血和15套黑血3D MRA图像集上进行手工分割作为金标准。使用无新U - Net(nnUNet)对亮血(管腔)和黑血图像集(管腔和血管壁)进行训练。训练采用70:20:10%(17/25:5/25:3/25数据集)的训练:验证:测试划分。在来自不同中心(英国、西班牙和澳大利亚)、序列(iT2PrepIR - BOOST、T2准备的冠状动脉磁共振血管造影[CMRA]和带交错随机轨迹的时间分辨血管造影[TWIST] MRA)、采集分辨率(0.9 - 3毫米)和场强(0.55T、1.5T和3T)的数据集(单一供应商)上进行推理。预测测量包括Dice相似系数(DSC)和交并比(IoU)。后处理(3D Slicer)包括中心线提取、直径测量和曲面多平面重组(CPR)。
最佳配置是3D U - Net。在1.5T的iT2PrepIR - BOOST数据集(1.3和1.8毫米)和3D CMRA数据集(0.9毫米)上进行亮血分割,DSC≥0.96且IoU≥0.92。对于0.55T的3D CMRA上的亮血分割,nnUNet在1.5立方毫米时DSC和IoU分数分别为0.93和0.88以及在3.0立方毫米时为0.68和0.52。在1.5T(巴塞罗那数据集)的CMRA图像集(1毫米)上获得的DSC和IoU分数分别为0.89和0.82。对于对比增强数据集(TWIST MRA),BRnnUNet模型的DSC和IoU分数分别为0.90和0.82。在1.5T的黑血iT2PrepIR - BOOST图像集上进行管腔分割,DSC≥0.95且IoU≥0.90,血管壁分割DSC≥0.80且IoU≥0.67。在所有受试者中成功实现了自动中心线跟踪、直径测量和CPR。
在3D亮血和黑血图像集上进行自动主动脉管腔和壁分割与金标准显示出极好的一致性。该技术展示了对主动脉形态快速且全面的评估,在未来各种心血管疾病的临床应用中具有巨大潜力。