Yu Tonghui, Huang Xuan, Chen Xi, Liang Jingbo, Li Xinyu, Cui Xufeng
School of Business, Xinyang Normal University, Xinyang, 464000, China.
School of Business Administration, Zhongnan University of Economics and Law, Wuhan, 430073, China; Center for Land Economics, Zhongnan University of Economics and Law, Wuhan, 430073, China.
J Environ Manage. 2025 Aug;389:126168. doi: 10.1016/j.jenvman.2025.126168. Epub 2025 Jun 13.
This study proposes a novel, grid-based framework for evaluating and zoning land use functions (LUFs) in the Yellow River Basin (YRB), aiming to improve spatial planning precision and promote balanced territorial development. By integrating multi-source data and an enhanced identification model, it addresses the limitations of traditional macro-scale approaches and supports more refined, function-oriented land governance in ecologically sensitive areas. Based on grid-level data from 78 cities between 2012 and 2022, a production-living-ecological (PLE) evaluation system is constructed using remote sensing, POI, and socio-economic indicators. The results reveal that: (1) production and living functions significantly intensified, with high-value living function areas increasing from 1.95 % to 7.53 %, while ecological functions declined, with high-value ecological areas decreasing from 34.15 % to 29.59 %; (2) LUFs differentiation is shaped by both natural and socio-economic drivers, with population density, road network density, and precipitation identified as key variables through Geo-detector and GWR models; and (3) using a combined mechanical equilibrium model and comparative advantage index, the study identifies 18 types of land use function zones, including six dominant and twelve composite types. Notably, living-dominated land expanded from 35.30 % to 35.59 %, while ecological-dominated land declined from 27.23 % to 24.90 %. This study contributes an integrative and scalable framework for accurately identifying and optimizing land use functions, offering theoretical support for differentiated territorial spatial governance in ecologically vulnerable regions.
本研究提出了一种新颖的、基于网格的框架,用于评估黄河流域的土地利用功能(LUFs)并进行分区,旨在提高空间规划精度,促进区域均衡发展。通过整合多源数据和改进的识别模型,该框架克服了传统宏观尺度方法的局限性,支持在生态敏感地区进行更精细、以功能为导向的土地治理。基于2012年至2022年78个城市的网格级数据,利用遥感、POI和社会经济指标构建了生产-生活-生态(PLE)评价体系。结果表明:(1)生产和生活功能显著增强,高价值生活功能区从1.95%增至7.53%,而生态功能下降,高价值生态区从34.15%降至29.59%;(2)土地利用功能的分异受自然和社会经济驱动因素共同影响,通过地理探测器和地理加权回归模型确定人口密度、道路网络密度和降水量为关键变量;(3)运用综合机械平衡模型和比较优势指数,该研究识别出18种土地利用功能区,包括6种主导型和12种复合型。值得注意的是,以生活为主导的土地面积从35.30%扩大至35.59%,而以生态为主导的土地面积从27.23%降至24.90%。本研究为准确识别和优化土地利用功能贡献了一个综合且可扩展的框架,为生态脆弱地区差异化的国土空间治理提供了理论支持。