Suppr超能文献

ConsAMPHemo:一种基于机器学习方法预测抗菌肽溶血作用的计算框架。

ConsAMPHemo: A computational framework for predicting hemolysis of antimicrobial peptides based on machine learning approaches.

作者信息

Xie Peilin, Yao Lantian, Guan Jiahui, Chung Chia-Ru, Zhao Zhihao, Long Feiyu, Sun Zhenglong, Lee Tzong-Yi, Chiang Ying-Chih

机构信息

Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.

出版信息

Protein Sci. 2025 Jul;34(7):e70087. doi: 10.1002/pro.70087.

Abstract

Many antimicrobial peptides (AMPs) function by disrupting the cell membranes of microbes. While this ability is crucial for their efficacy, it also raises questions about their safety. Specifically, the membrane-disrupting ability could lead to hemolysis. Traditionally, the hemolytic activity of AMPs is evaluated through experiments. To reduce the cost of assessing the safety of an AMP as a drug, we introduce ConsAMPHemo, a two-stage framework based on deep learning. ConsAMPHemo performs conventional binary classification of the hemolytic activities of AMPs and predicts their hemolysis concentrations through regression. Our model demonstrates excellent classification performance, achieving an accuracy of 99.54%, 82.57%, and 88.04% on three distinct datasets, respectively. Regarding regression prediction, the model achieves a Pearson correlation coefficient of 0.809. Additionally, we identify the correlation between features and hemolytic activity. The insights gained from this work shed light on the underlying physics of the hemolytic nature of an AMP. Therefore, our study contributes to the development of safer AMPs through cost-effective hemolytic activity prediction and by revealing the design principles for AMPs with low hemolytic toxicity. The codes and datasets of ConsAMPHemo are available at https://github.com/Cpillar/ConsAMPHemo.

摘要

许多抗菌肽(AMPs)通过破坏微生物的细胞膜发挥作用。虽然这种能力对其功效至关重要,但也引发了对其安全性的质疑。具体而言,膜破坏能力可能导致溶血。传统上,通过实验评估AMPs的溶血活性。为了降低评估一种AMPs作为药物的安全性成本,我们引入了ConsAMPHemo,这是一个基于深度学习的两阶段框架。ConsAMPHemo对AMPs的溶血活性进行传统的二元分类,并通过回归预测其溶血浓度。我们的模型展示了出色的分类性能,在三个不同的数据集上分别达到了99.54%、82.57%和88.04%的准确率。关于回归预测,该模型的皮尔逊相关系数为0.809。此外,我们确定了特征与溶血活性之间的相关性。从这项工作中获得的见解揭示了AMPs溶血性质的潜在物理原理。因此,我们的研究通过经济高效的溶血活性预测以及揭示低溶血毒性AMPs的设计原则,为开发更安全的AMPs做出了贡献。ConsAMPHemo的代码和数据集可在https://github.com/Cpillar/ConsAMPHemo获取。

相似文献

2
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.
5
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
8
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.

本文引用的文献

1
UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.
BMC Bioinformatics. 2025 Jan 11;26(1):10. doi: 10.1186/s12859-025-06033-3.
4
Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation.
Anal Chem. 2024 Jan 30;96(4):1538-1546. doi: 10.1021/acs.analchem.3c04196. Epub 2024 Jan 16.
6
UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.
7
Improving protein succinylation sites prediction using embeddings from protein language model.
Sci Rep. 2022 Oct 8;12(1):16933. doi: 10.1038/s41598-022-21366-2.
8
AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
BMC Bioinformatics. 2022 Sep 26;23(1):389. doi: 10.1186/s12859-022-04952-z.
9
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis.
Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac377.
10
Contrastive learning on protein embeddings enlightens midnight zone.
NAR Genom Bioinform. 2022 Jun 11;4(2):lqac043. doi: 10.1093/nargab/lqac043. eCollection 2022 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验