Suppr超能文献

通过模拟评估测量停电暴露中的偏差。

Assessing bias in measuring power outage exposure with simulations.

作者信息

McBrien Heather, Mork Daniel, Kioumourtzoglou Marianthi-Anna, Casey Joan A

机构信息

Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York.

Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Environ Epidemiol. 2025 Jun 11;9(4):e403. doi: 10.1097/EE9.0000000000000403. eCollection 2025 Aug.

Abstract

BACKGROUND

New national power outage exposure data have become available since 2020, which can support epidemiologic studies of power outage and health outcomes, but exposure assessment challenges remain. Two sources of bias could affect results: available datasets are missing large percentages of observations, and the health-relevant duration of power outages remains unknown. Here, we aimed to determine if existing datasets can produce usable effect estimates in epidemiologic studies despite missing data, and quantify bias introduced by incorrect assumptions about the health-relevant duration of power outages.

METHODS

Based on existing data from PowerOutage.us, we conducted simulations representing a county-level study. We simulated and then estimated the effect of daily power outage exposure on hospitalization rates. We measured the magnitude and direction of bias introduced in the presence of incorrect assumptions about the health-relevant power outage duration and when increasing amounts of exposure data were missing.

RESULTS

When the health-relevant power outage duration was underestimated, results were substantially biased towards the null (mean bias: -64.7%, SD: 34.9). Overestimation of the health-relevant power outage duration resulted in smaller bias (mean bias: -6.7%, SD: 30.6). When 80% or more of county-level person-time of power outage data were missing in 80% of study counties, results were severely biased towards the null (mean bias: -54.4%, SD: 39.8).

CONCLUSIONS

Our results show that while some bias is likely, sensitivity analyses and careful choices of health-relevant duration can help researchers leverage available power outage data to produce low bias effect estimates in epidemiologic studies of power outages and health outcomes.

摘要

背景

自2020年以来,新的国家停电暴露数据已可获取,这能够支持停电与健康结果的流行病学研究,但暴露评估挑战依然存在。两种偏差来源可能影响结果:现有数据集缺失很大比例的观测值,且停电与健康相关的持续时间仍不明确。在此,我们旨在确定尽管存在缺失数据,现有数据集在流行病学研究中能否产生可用的效应估计值,并量化因对停电与健康相关持续时间的错误假设而引入的偏差。

方法

基于PowerOutage.us的现有数据,我们进行了代表县级研究的模拟。我们模拟并估计了每日停电暴露对住院率的影响。我们测量了在对与健康相关的停电持续时间存在错误假设以及暴露数据缺失量增加时所引入偏差的大小和方向。

结果

当与健康相关的停电持续时间被低估时,结果大幅偏向无效值(平均偏差:-64.7%,标准差:34.9)。对与健康相关的停电持续时间的高估导致较小的偏差(平均偏差:-6.7%,标准差:30.6)。当80%或更多的研究县中80%或更多的县级停电数据的人时缺失时,结果严重偏向无效值(平均偏差:-54.4%,标准差:39.8)。

结论

我们的结果表明,虽然可能存在一些偏差,但敏感性分析以及对与健康相关持续时间的谨慎选择可以帮助研究人员利用可用的停电数据,在停电与健康结果的流行病学研究中产生低偏差的效应估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba8e/12160736/32701e182225/ee9-9-e403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验