Zhang Yueqi, Jiang Lixian, Wu Rongrong, Gao Wei, Zhang Xiaojie, Liu Lan, Zhang Yaxuan, Lu Jin, Zheng Yuanyi, Cai Xiaojun, Fu Jianliang
Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China.
Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, P. R. China.
Theranostics. 2025 May 25;15(13):6347-6368. doi: 10.7150/thno.110389. eCollection 2025.
Absent in melanoma 2 (AIM2) inflammasome-mediated effector plays critical roles in multiple disease pathologies. While nanotechnology has revolutionized therapeutic development through novel approaches, the potential regulatory effects of nanoparticles on AIM2 inflammasome activity remain unexplored. Here, guided by clinical patient data and computational modeling, we developed an AIM2 inflammasome-targeting biomimetic mineralization inhibitor for vascular dementia (VaD) therapy. GEO datasets were analyzed to compare AIM2 inflammasome component expression in VaD patient brains versus controls. Molecular dynamics simulations identified high-affinity binding between manganese ferrocyanide and the AIM2 protein. We synthesized hollow manganese Prussian blue nanoparticles (HMPB) via biomineralization and functionalized them with M2 macrophage-derived extracellular vesicles (M2exo@HMPB). Therapeutic efficacy was evaluated in a VaD rat model through intravenous and intracerebroventricular administration, employing behavioral assessments, histopathological analysis, and inflammatory cytokine profiling. AIM2 inflammasome assembly and pyroptosis were investigated through protein immunoblotting, scanning electron microscopy/transmission electron microscopy (SEM/TEM) imaging of microglial cells, and primary microglia cultures under hypoxic-hypoglycemic conditions. Gene expression analysis demonstrated significantly elevated levels of AIM2 inflammasome components in VaD patients compared to normal controls. Molecular dynamics simulations revealed effective binding of manganese ferrocyanide to AIM2. M2exo@HMPB targeted central inflamed sites and were ultimately phagocytosed by microglia. In an sustained hypoxic-hypoglycemic model, M2exo@HMPB inhibited AIM2 inflammasome assembly and pyroptosis in primary microglia, thereby reducing IL-18/IL-1β release and promoting neuronal survival. In VaD rat models, M2exo@HMPB alleviated neuronal loss and white matter lesions while improving learning and executive functions. Additionally, M2exo@HMPB demonstrated favorable biosafety. : Integrating clinical bioinformatics with computational drug design, this study establishes a translational paradigm for nanomaterial development. M2exo@HMPB serves not only as an AIM2 inflammasome-targeting biomimetic mineralization inhibitor for VaD therapy but also provides new insights for treating AIM2-mediated cell death pathologies.
黑色素瘤缺失因子2(AIM2)炎性小体介导的效应器在多种疾病病理过程中发挥关键作用。虽然纳米技术通过新颖的方法彻底改变了治疗药物的研发,但纳米颗粒对AIM2炎性小体活性的潜在调节作用仍未得到探索。在此,以临床患者数据和计算模型为指导,我们开发了一种用于血管性痴呆(VaD)治疗的靶向AIM2炎性小体的仿生矿化抑制剂。分析了基因表达综合数据库(GEO)数据集,以比较VaD患者大脑与对照组中AIM2炎性小体成分的表达。分子动力学模拟确定了锰氰化亚铁与AIM2蛋白之间的高亲和力结合。我们通过生物矿化合成了中空的锰普鲁士蓝纳米颗粒(HMPB),并用M2巨噬细胞衍生的细胞外囊泡(M2exo@HMPB)对其进行功能化。通过静脉内和脑室内给药,在VaD大鼠模型中评估治疗效果,采用行为评估、组织病理学分析和炎性细胞因子分析。通过蛋白质免疫印迹、小胶质细胞的扫描电子显微镜/透射电子显微镜(SEM/TEM)成像以及在缺氧-低血糖条件下的原代小胶质细胞培养,研究了AIM2炎性小体的组装和细胞焦亡。基因表达分析表明,与正常对照组相比,VaD患者中AIM2炎性小体成分的水平显著升高。分子动力学模拟揭示了锰氰化亚铁与AIM2的有效结合。M2exo@HMPB靶向中枢炎症部位,最终被小胶质细胞吞噬。在持续缺氧-低血糖模型中,M2exo@HMPB抑制原代小胶质细胞中AIM2炎性小体的组装和细胞焦亡,从而减少IL-18/IL-1β的释放并促进神经元存活。在VaD大鼠模型中,M2exo@HMPB减轻了神经元损失和白质损伤,同时改善了学习和执行功能。此外,M2exo@HMPB表现出良好的生物安全性。本研究将临床生物信息学与计算药物设计相结合,建立了纳米材料研发的转化范例。M2exo@HMPB不仅作为一种用于VaD治疗的靶向AIM2炎性小体的仿生矿化抑制剂,还为治疗AIM2介导的细胞死亡病理提供了新的见解。