García-González Luis A, Marrero-Ponce Yovani, García-Jacas César R, Aguila Puentes Sergio A
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada, Baja California C. P. 22860, México.
Facultad de Ingeniería. Universidad Panamericana. Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México.
J Chem Inf Model. 2025 Jul 14;65(13):6621-6631. doi: 10.1021/acs.jcim.5c00600. Epub 2025 Jun 18.
Antimicrobial peptides (AMPs) have emerged as a promising alternative to conventional drugs due to their potential applications in combating multidrug-resistant pathogens. Various computational approaches have been developed for AMP prediction, ranging from shallow learning methods to advanced deep learning techniques. Additionally, the performance of shallow learning models based on self-learning features derived from protein language models has recently been studied. However, the performance of AMP models based on shallow learning strongly depends on the quality of descriptors derived via manual feature engineering, which may miss crucial information by assuming that the initial descriptor set fully captures relevant information. The AExOp-DCS algorithm was introduced as an automatic feature domain optimization method that identifies the "optimal" descriptor set driven by the chemical structure and biological activity of the compounds under study. QSAR models built on AExOp-DCS optimized descriptors outperform those using nonoptimized sets. In this study, we explore the use of AExOp-DCS to identify optimal descriptor subsets for AMP modeling. Experimental results show that the descriptors returned by AExOp-DCS contain information comparable to those used in top-performing models while exhibiting higher discriminative capacity. The generated models based on the descriptors returned by AExOp-DCS achieved performance metric values comparable to state-of-the-art approaches while utilizing fewer descriptors, suggesting a more efficient modeling process. By reducing dimensionality without sacrificing accuracy, this approach contributes to the development of more efficient computational pipelines for AMP discovery. Finally, a Java software called AExOp-DCS-SEQ is freely available, enabling researchers to leverage its capabilities for peptide descriptor search and AMP classification tasks.
抗菌肽(AMPs)因其在对抗多重耐药病原体方面的潜在应用,已成为传统药物的一种有前景的替代品。已经开发了各种计算方法用于抗菌肽预测,从浅层学习方法到先进的深度学习技术。此外,最近还研究了基于从蛋白质语言模型衍生的自学习特征的浅层学习模型的性能。然而,基于浅层学习的抗菌肽模型的性能在很大程度上取决于通过手动特征工程获得的描述符的质量,而手动特征工程可能会因假设初始描述符集完全捕获了相关信息而遗漏关键信息。AExOp-DCS算法作为一种自动特征域优化方法被引入,该方法可识别由所研究化合物的化学结构和生物活性驱动的“最优”描述符集。基于AExOp-DCS优化描述符构建的定量构效关系(QSAR)模型优于使用未优化描述符集构建的模型。在本研究中,我们探索使用AExOp-DCS来识别用于抗菌肽建模的最优描述符子集。实验结果表明,AExOp-DCS返回的描述符所包含的信息与表现最佳的模型所使用的描述符相当,同时具有更高的区分能力。基于AExOp-DCS返回的描述符生成的模型在使用更少描述符的情况下,实现了与现有最先进方法相当的性能指标值,这表明建模过程更高效。通过在不牺牲准确性的情况下降低维度,这种方法有助于开发更高效的抗菌肽发现计算流程。最后,一款名为AExOp-DCS-SEQ的Java软件可免费获取,使研究人员能够利用其功能进行肽描述符搜索和抗菌肽分类任务。