Suppr超能文献

从规划到预后:利用人工智能预测微创部分肾切除术后的肾功能

From planning to prognosis: predicting renal function after minimally-invasive partial nephrectomy with artificial intelligence.

作者信息

Amparore Daniele, Piana Alberto, Simeri Andrea, Pezzi Vincenzo, DI Dio Michele, Fiori Cristian, Greco Gianluigi, Porpiglia Francesco

机构信息

Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy -

Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy.

出版信息

Minerva Urol Nephrol. 2025 Jun;77(3):401-407. doi: 10.23736/S2724-6051.25.06520-6.

Abstract

This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m, and a strong correlation with observed outcomes (r=0.904, P<10). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.

摘要

本研究提出了一种机器学习模型,用于预测微创部分肾切除术后的肾功能下降。该模型使用了2015年至2023年期间接受治疗的556例患者的数据集,纳入了患者、肿瘤和术中手术变量——包括阻断策略、切除技术和肾缝合类型——以估计术后3个月的估算肾小球滤过率(eGFR)下降情况。随机森林回归器的表现优于其他模型,预测准确率达到89.29%,平均绝对误差为8.09 mL/min/1.73 m²,与观察结果具有很强的相关性(r=0.904,P<0.001)。这些发现支持在保留肾单位手术中使用人工智能进行个性化手术规划和功能结局预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验