Amparore Daniele, Piana Alberto, Simeri Andrea, Pezzi Vincenzo, DI Dio Michele, Fiori Cristian, Greco Gianluigi, Porpiglia Francesco
Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy -
Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy.
Minerva Urol Nephrol. 2025 Jun;77(3):401-407. doi: 10.23736/S2724-6051.25.06520-6.
This study presents a machine learning model to predict renal function decline following minimally-invasive partial nephrectomy. Using a dataset of 556 patients treated between 2015 and 2023, the model incorporated patient, tumor, and intraoperative surgical variables - including clamping strategy, resection technique, and renorrhaphy type - to estimate the 3-month postoperative eGFR drop. A Random Forest Regressor outperformed other models, achieving a prediction accuracy of 89.29%, a mean absolute error of 8.09 mL/min/1.73 m, and a strong correlation with observed outcomes (r=0.904, P<10). These findings support the use of AI for personalized surgical planning and functional outcome prediction in nephron-sparing surgery.
本研究提出了一种机器学习模型,用于预测微创部分肾切除术后的肾功能下降。该模型使用了2015年至2023年期间接受治疗的556例患者的数据集,纳入了患者、肿瘤和术中手术变量——包括阻断策略、切除技术和肾缝合类型——以估计术后3个月的估算肾小球滤过率(eGFR)下降情况。随机森林回归器的表现优于其他模型,预测准确率达到89.29%,平均绝对误差为8.09 mL/min/1.73 m²,与观察结果具有很强的相关性(r=0.904,P<0.001)。这些发现支持在保留肾单位手术中使用人工智能进行个性化手术规划和功能结局预测。