Qi He, Li Xiaoqiang, Zhang Chengcheng, Zhao Tianyi
School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
Center for Drug Evaluation and Inspection for Heilongjiang Province, Harbin, China.
Front Pharmacol. 2025 Jun 2;16:1589788. doi: 10.3389/fphar.2025.1589788. eCollection 2025.
Large Language Models (LLMs), recognized for their advanced capabilities in natural language processing, have been successfully employed across various domains. However, their effectiveness in addressing challenges related to drug discovery has yet to be fully elucidated.
In this paper, we propose a novel LLM based method for drug-drug interaction (DDI) prediction, named DDI-JUDGE, achieved through the integration of judging and ICL prompts. The proposed method outperforms existing LLM approaches, demonstrating the potential of LLMs for predicting DDIs. We introduce a novel in-context learning (ICL) prompt paradigm that selects high-similarity samples as positive and negative prompts, enabling the model to effectively learn and generalize knowledge. Additionally, we present an ICL-based prompt template that structures inputs, prediction tasks, relevant factors, and examples, leveraging the pre-trained knowledge and contextual understanding of LLMs to enhance DDI prediction capabilities. To further refine predictions, we employ GPT-4 as a discriminator to assess the relevance of predictions generated by multiple LLMs.
DDI-JUDGE achieves the best performance among all models in both zero-shot and few-shot settings, with an AUC of 0.642/0.788 and AUPR of 0.629/0.801, respectively. These results demonstrate its superior predictive capability and robustness across different learning scenarios.
These findings highlight the potential of LLMs in advancing drug discovery through more effective DDI prediction. The modular prompt structure, combined with ensemble reasoning, offers a scalable framework for knowledge-intensive biomedical applications. The code for DDI-JUDGE is available at https://github.com/zcc1203/ddi-judge.
大语言模型(LLMs)以其在自然语言处理方面的先进能力而闻名,已在各个领域得到成功应用。然而,它们在应对与药物发现相关挑战方面的有效性尚未得到充分阐明。
在本文中,我们提出了一种基于大语言模型的新型药物 - 药物相互作用(DDI)预测方法,名为DDI - JUDGE,该方法通过整合判断和上下文学习(ICL)提示实现。所提出的方法优于现有的大语言模型方法,证明了大语言模型在预测药物 - 药物相互作用方面的潜力。我们引入了一种新颖的上下文学习(ICL)提示范式,该范式选择高相似性样本作为正、负提示,使模型能够有效地学习和归纳知识。此外,我们提出了一种基于ICL的提示模板,该模板对输入、预测任务、相关因素和示例进行结构化,利用大语言模型的预训练知识和上下文理解来增强药物 - 药物相互作用预测能力。为了进一步优化预测,我们使用GPT - 4作为鉴别器来评估多个大语言模型生成的预测的相关性。
在零样本和少样本设置下,DDI - JUDGE在所有模型中均取得了最佳性能,其曲线下面积(AUC)分别为0.642/0.788,精确率均值(AUPR)分别为0.629/0.801。这些结果证明了其在不同学习场景下的卓越预测能力和稳健性。
这些发现突出了大语言模型通过更有效的药物 - 药物相互作用预测推进药物发现的潜力。模块化提示结构与集成推理相结合,为知识密集型生物医学应用提供了一个可扩展的框架。DDI - JUDGE的代码可在https://github.com/zcc1203/ddi - judge获取。