Fu Caihong, Liu Guangyu, Fan Yirui, Xiao Lang, Li Wenhua, Tian Xinyu, Xiao Jianxi
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu, 730000, PR China.
Mater Today Bio. 2025 May 27;32:101908. doi: 10.1016/j.mtbio.2025.101908. eCollection 2025 Jun.
Digital light processing (DLP) bioprinting has revolutionized tissue engineering by offering unprecedented speed and precision. However, its full biomedical potential is hindered by the scarcity of cell-laden bioinks that combine excellent printability with superior bioactivity. In this study, we introduce a novel cell-laden collagen-based bioink optimized for precise DLP bioprinting and diabetic wound regeneration. This bioink integrates methacrylated collagen (CMA) with dihydromyricetin (DHM) and selected additives, achieving a combination of low concentration, high printability, and superior cell bioactivity, along with antioxidant and anti-inflammatory effects. By employing a multi-crosslinking strategy that integrates free radical polymerization, Michael addition, Schiff base formation, and hydrogen bonding, the bioink achieves an ultra-fast gelation speed (375 % increase), a 161 % increase in stiffness, a 231 % improvement in mechanical resilience, and a 208 % enhancement in anti-biodegradation. These properties allow for the fabrication of intricate, cell-laden constructs with micron-scale precision, high cell viability, minimal swelling, and enhanced structural stability. The CMA-DHM system synergistically enhances 3D cell proliferation, mitigates oxidative stress, and modulates macrophage polarization, significantly outperforming conventional CMA hydrogels. Leveraging these properties, we developed biomimetic skin substitutes encapsulating human dermal fibroblasts (HDFs), which effectively facilitate diabetic wound progression through critical healing phases. These skin substitutes provide potent antioxidant and anti-inflammatory effects, accelerate re-epithelialization and collagen deposition, and enhance angiogenesis, thereby preventing chronic wound formation and facilitating efficient tissue regeneration. This study establishes a versatile, scalable DLP bioprinting platform, offering a rapid and effective solution for chronic wound treatment, representing a significant advancement in regenerative medicine.
数字光处理(DLP)生物打印通过提供前所未有的速度和精度,给组织工程带来了变革。然而,其在生物医学方面的全部潜力受到了限制,因为缺乏将出色的可打印性与卓越的生物活性相结合的含细胞生物墨水。在本研究中,我们引入了一种新型的基于胶原蛋白的含细胞生物墨水,该生物墨水针对精确的DLP生物打印和糖尿病伤口再生进行了优化。这种生物墨水将甲基丙烯酸化胶原蛋白(CMA)与二氢杨梅素(DHM)及选定的添加剂相结合,实现了低浓度、高可打印性、卓越的细胞生物活性以及抗氧化和抗炎作用的组合。通过采用整合自由基聚合、迈克尔加成、席夫碱形成和氢键作用的多交联策略,该生物墨水实现了超快的凝胶化速度(提高了375%)、硬度提高了161%、机械弹性提高了231%以及抗生物降解能力提高了208%。这些特性使得能够制造出具有微米级精度、高细胞活力、最小肿胀和增强结构稳定性的复杂含细胞构建体。CMA - DHM系统协同增强3D细胞增殖、减轻氧化应激并调节巨噬细胞极化,显著优于传统的CMA水凝胶。利用这些特性,我们开发了包裹人真皮成纤维细胞(HDFs)的仿生皮肤替代品,其通过关键的愈合阶段有效促进糖尿病伤口的进展。这些皮肤替代品具有强大的抗氧化和抗炎作用,加速再上皮化和胶原蛋白沉积,并增强血管生成,从而防止慢性伤口形成并促进高效的组织再生。本研究建立了一个通用的、可扩展的DLP生物打印平台,为慢性伤口治疗提供了一种快速有效的解决方案,代表了再生医学的一项重大进展。