Suppr超能文献

通过加权基因共表达网络分析(WGCNA)和机器学习探索中风与阻塞性睡眠呼吸暂停之间的潜在生物标志物。

Exploring the potential biomarkers between stroke and obstructive sleep apnea by WGCNA and machine learning.

作者信息

Zhou Lin, Ye Pengfan, Wang Yiming

机构信息

Department of Neurology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejinag, China.

出版信息

Sleep Breath. 2025 Jun 20;29(4):219. doi: 10.1007/s11325-025-03369-1.

Abstract

BACKGROUND

Ischemic stroke (IS) and obstructive sleep apnea (OSA) are highly prevalent disorders with significant societal and individual burdens. OSA exacerbates stroke outcomes, elevates recurrent stroke risk, and impedes functional recovery. Identifying shared biomarkers and elucidating the molecular mechanisms linking IS and OSA have been critical for developing targeted therapies and improving patient prognosis.

METHODS

Transcriptomic data for IS and OSA were obtained from the GEO database (GSE58294, GSE135917, GSE38792, and GSE22255). After batch-effect correction, weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to identify disease-associated genes. Functional enrichment analysis and a protein-protein interaction network construction were conducted. Advanced machine learning algorithms-Least Absolute Shrinkage and Selection Operator (LASSO) regression and random forests-were applied to screen hub genes, followed by validation of their diagnostic performance. Patients were stratified into high-and low-expression groups based on hub genes levels, and gene set enrichment analysis (GSEA) was performed to characterize pathway activity.

RESULTS

Integration of WGCNA and differential expression analysis revealed 112 shared differentially expressed genes (DEGs) significantly associated with IS and OSA. Enrichment analysis implicated these DEGs in critical processes, including protein ubiquitination, fatty acid metabolism, cell proliferation and apoptosis, autophagy, cyclooxygenase pathway, and chromatin remodeling. Machine learning identified DUSP1 as a central hub gene, with significantly elevated expression in both IS and OSA. Diagnostic validation demonstrated robust performance for DUSP1 (AUCs: 1.000 in GSE58294, 0.885 in GSE135917, 0.718 in GSE22255), though variability was observed in GSE38792 (AUC: 0.487). GSEA highlighted distinct pathway signatures: high DUSP1 expression correlated with activation of ribosome, spliceosome, and nucleocytoplasmic transport pathway, while suppressing Ras/Rap1 signaling, platelet activation, PI3K-AKT signaling, IL-17 signaling, and immune-related pathways (e.g., Fc gamma R-mediated phagocytosis, cytokine-cytokine receptor interaction, and B cell receptor signaling pathway).

CONCLUSION

Through integrative bioinformatics and machine learning, this study identifies DUSP1 as a novel hub gene linking IS and OSA. Functional annotation reveal its involvement in shared biological pathways, offering mechanistic insights into disease pathogenesis and highlighting DUSP1 as a potential therapeutic target.

摘要

背景

缺血性中风(IS)和阻塞性睡眠呼吸暂停(OSA)是高度流行的疾病,给社会和个人带来了沉重负担。OSA会加重中风后果,提高复发性中风风险,并阻碍功能恢复。识别共同的生物标志物并阐明连接IS和OSA的分子机制对于开发靶向治疗和改善患者预后至关重要。

方法

从GEO数据库(GSE58294、GSE135917、GSE38792和GSE22255)中获取IS和OSA的转录组数据。在进行批次效应校正后,进行加权基因共表达网络分析(WGCNA)和差异表达分析以识别疾病相关基因。进行功能富集分析和蛋白质-蛋白质相互作用网络构建。应用先进的机器学习算法——最小绝对收缩和选择算子(LASSO)回归和随机森林——来筛选枢纽基因,随后验证其诊断性能。根据枢纽基因水平将患者分为高表达组和低表达组,并进行基因集富集分析(GSEA)以表征通路活性。

结果

WGCNA和差异表达分析的整合揭示了112个与IS和OSA显著相关的共同差异表达基因(DEG)。富集分析表明这些DEG参与了关键过程,包括蛋白质泛素化、脂肪酸代谢、细胞增殖和凋亡、自噬、环氧化酶途径和染色质重塑。机器学习确定DUSP1为核心枢纽基因,在IS和OSA中均有显著升高的表达。诊断验证表明DUSP1具有强大的性能(GSE58294中的AUC为1.000,GSE135917中的AUC为0.885,GSE22255中的AUC为0.718),尽管在GSE38792中观察到了变异性(AUC:0.487)。GSEA突出了不同的通路特征:高DUSP1表达与核糖体、剪接体和核质运输途径的激活相关,同时抑制Ras/Rap1信号传导、血小板激活、PI3K-AKT信号传导、IL-17信号传导和免疫相关途径(例如FcγR介导的吞噬作用、细胞因子-细胞因子受体相互作用和B细胞受体信号通路)。

结论

通过综合生物信息学和机器学习,本研究确定DUSP1为连接IS和OSA的新型枢纽基因。功能注释揭示了其参与共同的生物学途径,为疾病发病机制提供了机制性见解,并突出了DUSP1作为潜在治疗靶点的地位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验