Suppr超能文献

一个用于精准农业中计算机视觉任务的印度带注释杂草数据集。

An Indian annotated weed dataset for computer vision tasks in precision farming.

作者信息

Shinde Sayali, Attar Vahida

机构信息

COEP Technological University Pune, India.

出版信息

Data Brief. 2025 May 21;61:111691. doi: 10.1016/j.dib.2025.111691. eCollection 2025 Aug.

Abstract

Weed infestations are the major threat for agriculture sector in India, significantly impacting crop productivity. These invasive plants not only attract pests but also compete with crops for essential nutrients, contributing to an estimated 45 % of the annual productivity loss in agriculture. For smallholder farmers, traditional methods such as manual weeding is both labour-intensive and expensive. Heavy reliance on usage of chemical herbicides has led to resistance in several weed species. Emerging technologies such as artificial intelligence and computer vision are transitioning farming sector by automating tasks. The main component for development of these technologies is the availability of datasets. To address this need, a comprehensive MH-Weed16 image dataset is created which consists of total 25,972 images acquired from real fields of Maharashtra region. Dataset includes 16 different weed species, annotated under guidance of agriculture experts. Out of total, dataset contains 7577 samples featuring both crops and weeds, captured from a top view to ensure precise estimation of weed areas. The proposed dataset will serve as a valuable resource for computer vision tasks in precision farming. The objective of this research is to contribute towards integrating technology for weed management strategies, paving the way for sustainable agricultural practices.

摘要

杂草侵扰是印度农业部门面临的主要威胁,对作物生产力产生重大影响。这些入侵植物不仅吸引害虫,还与作物争夺必需的养分,导致农业年生产力损失估计达45%。对于小农户来说,人工除草等传统方法既耗费劳动力又成本高昂。过度依赖化学除草剂的使用已导致多种杂草产生抗性。人工智能和计算机视觉等新兴技术正在通过自动化任务改变农业部门。这些技术发展的主要组成部分是数据集的可用性。为满足这一需求,创建了一个全面的MH-Weed16图像数据集,该数据集由从马哈拉施特拉邦地区的实际田地采集的总共25972张图像组成。数据集包括16种不同的杂草物种,在农业专家的指导下进行了标注。在总数中,数据集包含7577个同时有作物和杂草的样本,从俯视角度拍摄以确保精确估计杂草面积。所提出的数据集将作为精准农业中计算机视觉任务的宝贵资源。本研究的目的是为杂草管理策略的技术整合做出贡献,为可持续农业实践铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe9/12179629/9369c736e152/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验