Suppr超能文献

利用一种抗CRISPR蛋白在未驯化的芽孢杆菌菌株中推动CRISPR/Cas9介导的基因组编辑。

Harnessing an anti-CRISPR protein for powering CRISPR/Cas9-mediated genome editing in undomesticated Bacillus strains.

作者信息

Kim Man Su, Jeong Da-Eun, Choi Soo-Keun

机构信息

Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.

Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, South Korea.

出版信息

Microb Cell Fact. 2025 Jun 23;24(1):143. doi: 10.1186/s12934-025-02776-z.

Abstract

BACKGROUND

Wild-type Bacillus strains have significant industrial and medical value, but their effective utilization often requires strain improvement. The CRISPR/Cas9 system has become the primary tool for genome editing, allowing precise introduction of desired mutations at specific chromosomal locations. However, the practical application of CRISPR/Cas9 in most wild-type Bacillus strains remains challenging due to cellular toxicity resulting from Cas9/sgRNA activity. Therefore, controlling Cas9 toxicity is essential for the widespread application of the CRISPR/Cas9 system in wild-type Bacillus strains.

RESULTS

We employed AcrIIA4, an anti-CRISPR protein that inhibits the Cas9/sgRNA ribonucleoprotein complex from interacting with DNA, to mitigate Cas9/sgRNA-mediated toxicity, thereby enabling CRISPR/Cas9-based genome editing in wild-type strains. The newly constructed CRISPR/anti-CRISPR (CAC) plasmids harbor both cas9 and acrIIA4 genes controlled by the P and P promoters, respectively, along with the repressor genes lacI and xylR. This design allows precise control of Cas9 activity through inducers. Xylose, which induces AcrIIA4 expression, effectively alleviated Cas9/sgRNA-mediated toxicity during transformation. Under xylose induction, the CAC plasmid led to a remarkable 139-fold increase in the transformation efficiency of wild-type Bacillus subtilis compared to a plasmid lacking anti-CRISPR. Meanwhile, IPTG induction promoted Cas9 expression, facilitating efficient genome editing. Upon IPTG induction, the genome editing efficiency in wild-type B. subtilis increased from 0 to 95.8% in transformants carrying the CAC plasmid. Importantly, our findings extend beyond B. subtilis, revealing that the anti-CRISPR protein dramatically enhanced transformation and genome editing efficiencies in Bacillus pumilus. Moreover, we demonstrated that the CAC system successfully enabled the generation of spo0A mutants in Bacillus mojavensis, Bacillus tequilensis, and Paenibacillus polymyxa.

CONCLUSIONS

In this study, we developed a CAC system that utilizes the anti-CRISPR protein AcrIIA4 to reduce Cas9/sgRNA-mediated toxicity in Bacillus strains. This system enables precise control of AcrIIA4 and Cas9 expression through inducers, significantly enhancing the efficiency of transformation and genome editing in wild-type Bacillus strains. Therefore, the CAC system stands as a powerful tool to facilitate genome editing in diverse wild-type Bacillus species.

摘要

背景

野生型芽孢杆菌菌株具有重要的工业和医学价值,但其有效利用通常需要对菌株进行改良。CRISPR/Cas9系统已成为基因组编辑的主要工具,能够在特定染色体位置精确引入所需突变。然而,由于Cas9/sgRNA活性导致的细胞毒性,CRISPR/Cas9在大多数野生型芽孢杆菌菌株中的实际应用仍然具有挑战性。因此,控制Cas9毒性对于CRISPR/Cas9系统在野生型芽孢杆菌菌株中的广泛应用至关重要。

结果

我们使用AcrIIA4,一种抑制Cas9/sgRNA核糖核蛋白复合物与DNA相互作用的抗CRISPR蛋白,来减轻Cas9/sgRNA介导的毒性,从而在野生型菌株中实现基于CRISPR/Cas9的基因组编辑。新构建的CRISPR/抗CRISPR(CAC)质粒分别含有由P和P启动子控制的cas9和acrIIA4基因,以及阻遏基因lacI和xylR。这种设计允许通过诱导剂精确控制Cas9活性。诱导AcrIIA4表达的木糖在转化过程中有效减轻了Cas9/sgRNA介导的毒性。在木糖诱导下,与缺乏抗CRISPR的质粒相比,CAC质粒使野生型枯草芽孢杆菌的转化效率显著提高了139倍。同时,IPTG诱导促进了Cas9表达,有助于高效的基因组编辑。在IPTG诱导后,携带CAC质粒的野生型枯草芽孢杆菌转化子中的基因组编辑效率从0提高到了95.8%。重要的是,我们的发现不仅适用于枯草芽孢杆菌,还表明抗CRISPR蛋白显著提高了短小芽孢杆菌的转化和基因组编辑效率。此外,我们证明了CAC系统成功地在莫哈韦芽孢杆菌、龙舌兰芽孢杆菌和多粘类芽孢杆菌中产生了spo0A突变体。

结论

在本研究中,我们开发了一种CAC系统,该系统利用抗CRISPR蛋白AcrIIA4来降低芽孢杆菌菌株中Cas9/sgRNA介导的毒性。该系统通过诱导剂能够精确控制AcrIIA4和Cas9的表达,显著提高了野生型芽孢杆菌菌株的转化和基因组编辑效率。因此,CAC系统是促进多种野生型芽孢杆菌物种基因组编辑的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7139/12183898/c77d2921a211/12934_2025_2776_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验