Sun Mingchen, van Oss Luc, Wan Chenxuan, Wilson Daniela A
Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202510014. doi: 10.1002/anie.202510014. Epub 2025 Jul 2.
Nanomotors offer significant advantages over passive nanoparticles in biomedical applications. However, their potential has been largely restricted to cargo transport, with limited capacity for interaction with biological systems. Here, we present next-generation self-assembled nanomotors that not only exhibit chemotactic motility but also actively communicate with cells, reprogramming cell fate by inducing pyroptosis. These nanomotors are designed to respond to elevated reactive oxygen species (ROS) in the tumor microenvironment, triggering nitric oxide (NO)-driven propulsion and selective mitochondria targeting via triphenylphosphine (TPP) surface engineering. This interaction induces mitochondrial damage, cytochrome c release, and activation of gasdermin E (GSDME)-mediated pyroptosis. Furthermore, their chemotactic motility facilitates deeper tumor tissue penetration in 3D spheroids, demonstrating their ability to navigate physiological barriers. By shifting the paradigm from motility-driven to interactive nanomedicine, this study establishes a transformative platform for targeted cancer therapy.
在生物医学应用中,纳米马达相较于被动纳米颗粒具有显著优势。然而,其潜力在很大程度上局限于货物运输,与生物系统相互作用的能力有限。在此,我们展示了新一代自组装纳米马达,它们不仅表现出趋化运动性,还能与细胞积极通信,通过诱导细胞焦亡来重新编程细胞命运。这些纳米马达被设计为对肿瘤微环境中升高的活性氧(ROS)作出反应,通过三苯基膦(TPP)表面工程触发一氧化氮(NO)驱动的推进和选择性线粒体靶向。这种相互作用会导致线粒体损伤、细胞色素c释放以及gasdermin E(GSDME)介导的细胞焦亡激活。此外,它们的趋化运动性有助于在三维球体中更深入地穿透肿瘤组织,证明了它们穿越生理屏障的能力。通过将范式从运动驱动的纳米医学转变为交互式纳米医学,本研究建立了一个用于靶向癌症治疗的变革性平台。