Dzierżyński Eliasz, Blicharz-Grabias Ewelina, Komaniecka Iwona, Panek Rafal, Forma Alicja, Gawlik Piotr J, Puźniak Damian, Flieger Wojciech, Choma Adam, Suśniak Katarzyna, Teresiński Grzegorz, Baj Jacek, Kupisz Krzysztof, Flieger Jolanta
Department of Plastic Surgery, Center of Oncology of the Lublin Region St. Jana z Dukli, Jaczewskiego 7, 20-090, Lublin, Poland.
Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093, Lublin, Poland.
Arch Toxicol. 2025 Jun 25. doi: 10.1007/s00204-025-04092-2.
Humans are chronically exposed to airborne particulate matter and environmental microplastics through food, water, and consumer products. These anthropogenic pollutants may accumulate in human tissues, but their distribution and chemical identity remain poorly understood. In this study, we analyzed samples of human brain, liver, thyroid, kidney, heart, skeletal muscle, and lung tissue collected post-mortem to assess the presence and composition of micro- and nanoplastics (MNPs). Tissue samples were digested using hydrogen peroxide (30% H₂O₂) and processed via alumina filtration. The retained residues and filtrates were characterized using optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), dynamic light scattering (DLS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and optical photothermal infrared (O-PTIR) microscopy. Our analysis revealed a wide range of inorganic particles (primarily aluminosilicates and carbonates) and synthetic polymers, including polyethylene terephthalate (PET), polystyrene (PS), polyacrylonitrile (PAN), and cellulose derivatives. Notably, PS, PET, and PAN nanoparticles (<0.02 µm) were detected in the filtrates, indicating their potential to cross biological barriers and accumulate at the nanoscale. The thyroid, kidney, and brain tissues showed the highest levels of microplastic contamination, with up to 40.4 MP/g (wet weight) detected. These findings confirm the heterogeneous organ-specific accumulation of environmental polymers and highlight the potential of human autopsy tissues as biomonitors for environmental plastic exposure. The application of advanced spectroscopic techniques enables precise identification of polymeric contaminants and supports further research on their environmental origins and pathways of human exposure.
人类通过食物、水和消费品长期接触空气中的颗粒物和环境微塑料。这些人为污染物可能会在人体组织中积累,但其分布和化学特性仍知之甚少。在本研究中,我们分析了死后收集的人脑、肝脏、甲状腺、肾脏、心脏、骨骼肌和肺组织样本,以评估微塑料和纳米塑料(MNPs)的存在及组成。组织样本用过氧化氢(30% H₂O₂)消化,并通过氧化铝过滤进行处理。使用光学显微镜、带能量色散X射线光谱的扫描电子显微镜(SEM-EDS)、动态光散射(DLS)、基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)和光学光热红外(O-PTIR)显微镜对保留的残留物和滤液进行表征。我们的分析揭示了多种无机颗粒(主要是铝硅酸盐和碳酸盐)和合成聚合物,包括聚对苯二甲酸乙二酯(PET)、聚苯乙烯(PS)、聚丙烯腈(PAN)和纤维素衍生物。值得注意的是,在滤液中检测到了PS、PET和PAN纳米颗粒(<0.02 µm),表明它们有可能穿过生物屏障并在纳米尺度上积累。甲状腺、肾脏和脑组织显示出最高水平的微塑料污染,检测到的含量高达40.4 MP/g(湿重)。这些发现证实了环境聚合物在不同器官中的特异性积累,并突出了人体尸检组织作为环境塑料暴露生物监测器的潜力。先进光谱技术的应用能够精确识别聚合物污染物,并支持对其环境来源和人类暴露途径的进一步研究。