Suppr超能文献

克服癌症中簇集素诱导的化疗耐药性:基于片段药物发现方法的计算研究

Overcoming Clusterin-Induced Chemoresistance in Cancer: A Computational Study Using a Fragment-Based Drug Discovery Approach.

作者信息

Caro Engelo John Gabriel V, Gomez Marineil C, Tsai Po-Wei, Tayo Lemmuel L

机构信息

School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines.

School of Graduate Studies, Mapúa University, Manila 1002, Philippines.

出版信息

Biology (Basel). 2025 May 30;14(6):639. doi: 10.3390/biology14060639.

Abstract

Clusterin is one of the many known proteins implicated in cancer chemoresistance, which hinders the effectiveness of chemotherapy. This study aimed to design novel inhibitors targeting clusterin using fragment-based drug discovery (FBDD). This approach aims to develop new medicines by identifying small, simple molecules known as "fragments" that can bind to a specific target, such as a disease-causing protein. In this study, a primary ligand-binding site and an allosteric site on the clusterin molecule were identified through hotspot analysis. We screened commercially available fragment libraries for anti-cancer activity and applied the "rule of three" to ensure drug-like properties. The highest-affinity fragment underwent "fragment-growing" to develop potential drug candidates. After docking and toxicity screening, 194 candidate drugs were identified. Quantitative structure-activity relationship (QSAR) analysis revealed that the chemical size and complexity of the fragments significantly contributed to their binding affinity. Pharmacokinetic analyses of candidate drugs from FBDD followed by molecular dynamics simulation of the top 1 final candidate drug precursor demonstrated comparatively better affinity (average = -34.01 kcal/mol) than the reference compound (average = -6.15 kcal/mol) and significant ligand flexibility. This study offers a potential strategy to identify fragments or molecules that may serve as drugs against clusterin-related chemoresistance.

摘要

簇集素是众多与癌症化疗耐药性相关的已知蛋白质之一,它会阻碍化疗的效果。本研究旨在利用基于片段的药物发现(FBDD)设计针对簇集素的新型抑制剂。这种方法旨在通过识别被称为“片段”的小而简单的分子来开发新药,这些片段可以与特定靶点结合,比如致病蛋白。在本研究中,通过热点分析确定了簇集素分子上的一个主要配体结合位点和一个别构位点。我们筛选了市售的片段库以检测其抗癌活性,并应用“三规则”来确保药物样性质。对亲和力最高的片段进行“片段生长”以开发潜在的候选药物。经过对接和毒性筛选,确定了194种候选药物。定量构效关系(QSAR)分析表明,片段的化学大小和复杂性对其结合亲和力有显著贡献。对来自FBDD的候选药物进行药代动力学分析,随后对排名第一的最终候选药物前体进行分子动力学模拟,结果显示其亲和力(平均=-34.01千卡/摩尔)比参考化合物(平均=-6.15千卡/摩尔)更好,且配体具有显著的灵活性。本研究提供了一种潜在策略,可用于识别可能作为抗簇集素相关化疗耐药性药物的片段或分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fb5/12189888/4a5528762f4a/biology-14-00639-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验