Suppr超能文献

一种使用对比学习和瓦瑟斯坦自注意力机制的序列推荐方法。

A sequential recommendation method using contrastive learning and Wasserstein self-attention mechanism.

作者信息

Liang Shengbin, Ma Jinfeng, Zhao Qiuchen, Chen Tingting, Lu Xixi, Ren Shuanglong, Zhao Chenyang, Fu Lei, Ding Huichao

机构信息

School of Software, Henan University, Kaifeng, Henan, China.

Shandong Jining Tobacco Co., Ltd, Jining, Shandong, China.

出版信息

PeerJ Comput Sci. 2025 Mar 26;11:e2749. doi: 10.7717/peerj-cs.2749. eCollection 2025.

Abstract

Recent research has demonstrated the effectiveness of utilizing contrastive learning for training Transformer-based sequence encoders in sequential recommendation tasks. Items are represented using vectors and the relations between items are measured by the dot product self-attention, the feature representation in sequential recommendation can be enhanced. However, in real-world scenarios, user behavior sequences are unpredictable, and the limitations of dot product-based approaches hinder the complete capture of collaborative transferability. Moreover, the Bayesian personalized ranking (BPR) loss function, commonly utilized in recommendation systems, lacks constraints when considering positive and negative sampled items, potentially leading to suboptimal optimization outcomes. This presents a complex challenge that needs to be addressed. To tackle these issues, this article proposes a novel method involving stochastic self-attention. This article introduces uncertainty into the proposed model by utilizing elliptical Gaussian distribution controlled by mean and covariance vector to explain the unpredictability of items. At the same time, the proposed model combines a Wasserstein self-attention module to compute the positional relationships between items within a sequence in order to effectively incorporate uncertainty into the training process. The Wasserstein self-attention mechanism satisfies the triangular inequality and can not only addresses uncertainty but also promote collaborative transfer learning. Furthermore, embedding a stochastic Gaussian distribution into each item will bring additional uncertainty into the proposed model. Multi-pair contrastive learning relies on high-quality positive samples, and the proposed model combines the cloze task mask and dropout mask mechanisms to generate high-quality positive samples. It demonstrates superior performance and adaptability compared to traditional single-pair contrastive learning methods. Additionally, a dynamic loss reweighting strategy is introduced to balance the cloze task loss and the contrastive loss effectively. We conduct experiments and the results show that the proposed model outperforms the state-of-the-art models, especially on cold start items. For each metric, the hit ratio (HR) and normalized discounted cumulative gain (NDCG) on the Beauty dataset improved by an average of 1.3% and 10.27%, respectively; on the Toys dataset improved by an average of 8.24% and 5.89%, respectively; on the ML-1M dataset improved by an average of 68.62% and 8.22%, respectively; and on the ML-100M dataset improved by an average of 93.57% and 44.87% Our code is available at DOI: 10.5281/zenodo.13634624.

摘要

最近的研究表明,在序列推荐任务中利用对比学习来训练基于Transformer的序列编码器是有效的。使用向量表示物品,并通过点积自注意力来衡量物品之间的关系,可以增强序列推荐中的特征表示。然而,在实际场景中,用户行为序列是不可预测的,基于点积的方法的局限性阻碍了对协作可转移性的完全捕捉。此外,推荐系统中常用的贝叶斯个性化排序(BPR)损失函数在考虑正负采样物品时缺乏约束,可能导致次优的优化结果。这提出了一个需要解决的复杂挑战。为了解决这些问题,本文提出了一种涉及随机自注意力的新方法。本文通过利用由均值和协方差向量控制的椭圆高斯分布,将不确定性引入到所提出的模型中,以解释物品的不可预测性。同时,所提出的模型结合了一个瓦瑟斯坦自注意力模块,以计算序列中物品之间的位置关系,从而有效地将不确定性纳入训练过程。瓦瑟斯坦自注意力机制满足三角不等式,不仅可以解决不确定性,还可以促进协作迁移学习。此外,将随机高斯分布嵌入到每个物品中会给所提出的模型带来额外的不确定性。多对对比学习依赖于高质量的正样本,所提出的模型结合了完形填空任务掩码和随机失活掩码机制来生成高质量的正样本。与传统的单对对比学习方法相比,它表现出卓越的性能和适应性。此外,引入了一种动态损失重新加权策略,以有效地平衡完形填空任务损失和对比损失。我们进行了实验,结果表明所提出的模型优于现有模型,特别是在冷启动物品上。对于每个指标,在Beauty数据集上的命中率(HR)和归一化折损累计增益(NDCG)分别平均提高了1.3%和10.27%;在Toys数据集上分别平均提高了8.24%和5.89%;在ML-1M数据集上分别平均提高了68.62%和8.22%;在ML-100M数据集上分别平均提高了93.57%和44.87%。我们的代码可在DOI: 10.5281/zenodo.13634624获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eb2/12190389/bbfca55fc2dc/peerj-cs-11-2749-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验