Rusciano Dario
Fidia Ophthalmic Research, 95123 Catania, Italy.
Medicina (Kaunas). 2025 May 28;61(6):1009. doi: 10.3390/medicina61061009.
Multisensory integration is fundamental for coherent perception and interaction with the environment. While cortical mechanisms of multisensory convergence are well studied, emerging evidence implicates specialized retinal ganglion cells-particularly melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs)-in crossmodal processing. This review explores how hierarchical brain networks (e.g., superior colliculus, parietal cortex) and ipRGCs jointly shape perception and behavior, focusing on their convergence in multisensory plasticity. We highlight ipRGCs as gatekeepers of environmental light cues. Their anatomical projections to multisensory areas like the superior colliculus are well established, although direct evidence for their role in human audiovisual integration remains limited. Through melanopsin signaling and subcortical projections, they may modulate downstream multisensory processing, potentially enhancing the salience of crossmodal inputs. A key theme is the spatiotemporal synergy between melanopsin and melatonin: melanopsin encodes light, while melatonin fine-tunes ipRGC activity and synaptic plasticity, potentially creating time-sensitive rehabilitation windows. However, direct evidence linking ipRGCs to audiovisual rehabilitation remains limited, with their role primarily inferred from anatomical and functional studies. Future implementations should prioritize quantitative optical metrics (e.g., melanopic irradiance, spectral composition) to standardize light-based interventions and enhance reproducibility. Nonetheless, we propose a translational framework combining multisensory stimuli (e.g., audiovisual cues) with circadian-timed melatonin to enhance recovery in visual disorders like hemianopia and spatial neglect. By bridging retinal biology with systems neuroscience, this review redefines the retina's role in multisensory processing and offers novel, mechanistically grounded strategies for neurorehabilitation.
多感官整合对于与环境进行连贯的感知和互动至关重要。虽然多感官汇聚的皮质机制已得到充分研究,但新出现的证据表明,专门的视网膜神经节细胞——特别是表达黑视蛋白的内在光敏视网膜神经节细胞(ipRGCs)——参与了跨模态处理。本综述探讨了分层脑网络(如中脑上丘、顶叶皮质)和ipRGCs如何共同塑造感知和行为,重点关注它们在多感官可塑性方面的汇聚。我们强调ipRGCs是环境光线索的守门人。它们向中脑上丘等多感官区域的解剖投射已得到充分证实,尽管它们在人类视听整合中作用的直接证据仍然有限。通过黑视蛋白信号传导和皮质下投射,它们可能调节下游的多感官处理,潜在地增强跨模态输入的显著性。一个关键主题是黑视蛋白和褪黑素之间的时空协同作用:黑视蛋白编码光线,而褪黑素微调ipRGC的活动和突触可塑性,可能创造对时间敏感的康复窗口。然而,将ipRGCs与视听康复联系起来的直接证据仍然有限,其作用主要是从解剖学和功能研究中推断出来的。未来的应用应优先考虑定量光学指标(如黑素视亮度、光谱组成),以规范基于光的干预措施并提高可重复性。尽管如此,我们提出了一个将多感官刺激(如视听线索)与昼夜定时褪黑素相结合的转化框架,以促进偏盲和空间忽视等视觉障碍的恢复。通过将视网膜生物学与系统神经科学联系起来,本综述重新定义了视网膜在多感官处理中的作用,并为神经康复提供了新的、基于机制的策略。