Suppr超能文献

仿生超疏水表面:从自然到应用

Biomimetic Superhydrophobic Surfaces: From Nature to Application.

作者信息

Wang Yingke, Li Jiashun, Song Haoran, Wang Fenxiang, Su Xuan, Zhang Donghe, Xu Jie

机构信息

Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150080, China.

Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450008, China.

出版信息

Materials (Basel). 2025 Jun 12;18(12):2772. doi: 10.3390/ma18122772.

Abstract

Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy chemical modifications, researchers have devised various fabrication strategies-including laser etching, sol-gel processes, electrochemical deposition, and molecular self-assembly-to achieve superhydrophobic surfaces characterized by contact angles exceeding 150° and sliding angles below 5°. These technologies have found widespread applications in self-cleaning architectural coatings, efficient oil-water separation membranes, anti-icing materials for aviation, and anti-biofouling medical devices. This article begins by examining natural organisms exhibiting superhydrophobic properties, elucidating the principles underlying their surface structures and the wetting states of droplets on solid surfaces. Subsequently, it categorizes and highlights key fabrication methods and application domains of superhydrophobic surfaces, providing an in-depth and comprehensive discussion.

摘要

对仿生超疏水表面的研究借鉴了荷叶、水黾和蝴蝶翅膀等天然生物的微观结构和润湿机制,为开发人工功能表面提供了创新方法。通过将微/纳分级结构与低表面能化学修饰协同结合,研究人员设计了各种制造策略,包括激光蚀刻、溶胶-凝胶工艺、电化学沉积和分子自组装,以实现接触角超过150°且滑动角低于5°的超疏水表面。这些技术已在自清洁建筑涂料、高效油水分离膜、航空用防冰材料和抗生物污染医疗设备等领域得到广泛应用。本文首先研究具有超疏水特性的天然生物,阐明其表面结构的原理以及固体表面上液滴的润湿状态。随后,对超疏水表面的关键制造方法和应用领域进行分类和重点介绍,进行深入而全面的讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0d6/12194899/268857baf289/materials-18-02772-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验