Suppr超能文献

根区限制条件下根系构型的可塑性及活性氧-生长素调控

Plasticity of Root Architecture and ROS-Auxin Regulation in Under Root-Zone Restriction.

作者信息

Xing Qiang, Zhao Ruotong, Zhou Peng, Qin Jun, Liu Heming, Yu Shuiyan, Zhao Bin, Hu Yonghong

机构信息

School of Life Science, Fudan University, Shanghai 200433, China.

Shanghai Chenshan Botanical Garden, Shanghai 201602, China.

出版信息

Plants (Basel). 2025 Jun 19;14(12):1889. doi: 10.3390/plants14121889.

Abstract

Root zone restriction (RZR) technology optimizes plant growth and quality. However, the fleshy root system of exhibits sensitivity to spatial constraints, and research on the plasticity of its root architecture and adaptation mechanisms remains inadequate. This study provides a functional analysis of biomass allocation and root architectural responses to the root-zone restriction (RZR) in , comparing three container volumes (8.5, 17, and 34 L). While the total biomass increased with root zone volume (e.g., shoot biomass rose from 9.30 g to 59.94 g), RZR induced a 44.8% increase in root-to-shoot ratio, indicating carbon reallocation to enhance belowground resource acquisition. The principal component analysis identified root biomass, volume, and surface area as key plasticity drivers. Optimal root efficiency occurred at 26.09-28.23 L, where root length and tip/fork numbers peaked. Mechanistically, RZR elevated superoxide dismutase (SOD) activity by 49.74% but reduced catalase (CAT) by 74.24%, disrupting HO homeostasis. Concurrently, auxin transporter genes (, ) were upregulated, promoting root elongation and lateral branching through auxin redistribution. We hypothesize that ROS-auxin crosstalk mediates architectural reconfiguration to mitigate spatial stress, with thickened roots enhancing structural stability in restricted environments. The study underscores the need to optimize root zone volume in woody species cultivation, providing thresholds (e.g., >28 L for mature plants) to balance biomass yield and physiological costs in horticultural management.

摘要

根区限制(RZR)技术可优化植物生长和品质。然而,[植物名称]的肉质根系对空间限制表现出敏感性,其根系结构可塑性和适应机制的研究仍不充分。本研究对[植物名称]中生物量分配和根系结构对根区限制(RZR)的响应进行了功能分析,比较了三种容器体积(8.5、17和34升)。虽然总生物量随根区体积增加(例如,地上部生物量从9.30克增加到59.94克),但RZR使根冠比增加了44.8%,表明碳重新分配以增强地下资源获取。主成分分析确定根生物量、体积和表面积是关键的可塑性驱动因素。最佳根系效率出现在26.09 - 28.23升,此时根长和根尖/分叉数达到峰值。从机制上讲,RZR使超氧化物歧化酶(SOD)活性提高了49.74%,但使过氧化氢酶(CAT)降低了74.24%,破坏了H₂O₂稳态。同时,生长素转运蛋白基因([基因名称1]、[基因名称2])上调,通过生长素重新分布促进根伸长和侧枝生长。我们假设ROS - 生长素相互作用介导了根系结构的重新配置以减轻空间压力,加粗的根系增强了受限环境中的结构稳定性。该研究强调了在木本植物栽培中优化根区体积的必要性,提供了阈值(例如,成熟植株>28升)以平衡园艺管理中的生物量产量和生理成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53b5/12196556/d7538d9a8e3c/plants-14-01889-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验