Suppr超能文献

原发性脑肿瘤患者开颅术后下肢深静脉血栓形成危险因素的预测与分析:一种机器学习方法

Prediction and Analysis of Risk Factors for Lower Extremity Deep Vein Thrombosis After Craniotomy in Patients with Primary Brain Tumors: A Machine Learning Approach.

作者信息

Wu Lingzhi, Zhao Yunfeng, Yao Guangli, Li Xiaojing, Zhao Xiaomin

机构信息

Shanghai Punan Hospital, Department of Respiratory Medicine, Shanghai, China.

出版信息

Turk Neurosurg. 2025;35(4):636-643. doi: 10.5137/1019-5149.JTN.47938-24.3.

Abstract

AIM

To explore the risk factors associated with the occurrence of lower extremity deep vein thrombosis (DVT) after craniotomy in patients with primary brain tumors, and to develop a predictive model using machine learning.

MATERIAL AND METHODS

A prospective cohort study was conducted on 140 patients with primary brain tumors who underwent neurosurgical treatment at our hospital between March 2021 and September 2022. A logistic regression analysis was performed to identify independent risk factors associated with postoperative DVT. Additionally, multiple machine learning models were developed and evaluated to determine their predictive performance.

RESULTS

The incidence of lower extremity DVT after craniotomy was 27.9%. Logistic regression identified age [OR=1.07, 95% CI (1.03-1.11)], GCS score [OR=0.88, 95% CI (0.78-0.98)], D-dimer level [OR=1.08, 95% CI (1.02-1.15)], and mechanical ventilation (≥48 hours) [OR=3.83, 95% CI (1.21-12.15)] as independent risk factors (P < 0.05). The Gradient Boosting Machine (GBM) had the highest prediction accuracy among the assessed machine learning models, achieving an area under the curve (AUC) of 0.850, with a sensitivity of 56.44% and a specificity of 90.09%.

CONCLUSION

Age, D-dimer, and mechanical ventilation (≥48 hours) are independent risk factors for the development of lower extremity DVT after craniotomy in patients with primary brain tumors. The GCS score serves as a potential protective risk factor. The GBM model, with its high AUC and specificity, offers a promising tool for early identification of high-risk patients, potentially informing clinical decision-making and targeted interventions.

摘要

目的

探讨原发性脑肿瘤患者开颅术后下肢深静脉血栓形成(DVT)发生的相关危险因素,并利用机器学习建立预测模型。

材料与方法

对2021年3月至2022年9月在我院接受神经外科治疗的140例原发性脑肿瘤患者进行前瞻性队列研究。进行逻辑回归分析以确定与术后DVT相关的独立危险因素。此外,开发并评估了多种机器学习模型以确定其预测性能。

结果

开颅术后下肢DVT的发生率为27.9%。逻辑回归确定年龄[OR = 1.07,95%CI(1.03 - 1.11)]、格拉斯哥昏迷量表(GCS)评分[OR = 0.88,95%CI(0.78 - 0.98)]、D - 二聚体水平[OR = 1.08,95%CI(1.02 - 1.15)]和机械通气(≥48小时)[OR = 3.83,95%CI(1.21 - 12.15)]为独立危险因素(P < 0.05)。在评估的机器学习模型中,梯度提升机(GBM)具有最高的预测准确性,曲线下面积(AUC)为0.850,灵敏度为56.44%,特异性为90.09%。

结论

年龄、D - 二聚体和机械通气(≥48小时)是原发性脑肿瘤患者开颅术后下肢DVT发生的独立危险因素。GCS评分是一个潜在的保护性危险因素。GBM模型具有较高的AUC和特异性,为早期识别高危患者提供了一个有前景的工具,可能为临床决策和针对性干预提供依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验