Cavicchioli Matteo, Moglia Andrea, Garret Guillaume, Puglia Martina, Vacavant Antoine, Pugliese Giacomo, Cerveri Pietro
Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Giuseppe Ponzio 34, 20133 Milan, Lombardy, Italy; Fondazione MIAS (AIMS Academy), Ospedale Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Lombardy, Italy.
Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Giuseppe Ponzio 34, 20133 Milan, Lombardy, Italy.
Comput Biol Med. 2025 Sep;195:110530. doi: 10.1016/j.compbiomed.2025.110530. Epub 2025 Jun 27.
Accurate segmentation of hepatic and portal veins is critical for preoperative planning in liver surgery, especially for resection and transplantation procedures. Extensive anatomical variability, pathological alterations, and inherent class imbalance between background and vascular structures challenge this task. Current state-of-the-art deep learning approaches often fail to generalize across patient variability or maintain vascular topology, thus limiting their clinical applicability. To overcome these limitations, we propose the D-RD-UNet, a dual-stage, dual-class segmentation framework for hepatic and portal vessels. The D-RD-UNet architecture employs dense and residual connections to improve feature propagation and segmentation accuracy. Our D-RD-UNet integrates advanced data-driven preprocessing, a dual-path architecture for 3D and 4D data, with the latter concatenating computed tomography (CT) scans with four relevant vesselness filters (Sato, Frangi, OOF, and RORPO). The pipeline is completed by the first developed postprocessing multi-class vessel connectivity correction algorithm based on centerlines. Additionally, we introduce the first radius-based branching algorithm to evaluate the model's predictions locally, providing detailed insights into the accuracy of vascular reconstructions at different scales. In order to make up for the scarcity of well-annotated open datasets for hepatic vessels segmentation, we curated AIMS-HPV-385, a large, pathological, multi-class, and validated dataset on 385 CT scans. We trained different configurations of D-RD-UNet and state-of-the-art models on 327 CTs of AIMS-HPV-385. Experimental results on the remaining 58 CTs of AIMS-HPV-385 and on the 20 CTs of 3D-IRCADb-01 demonstrate superior performances of the D-RD-UNet variants over state-of-the-art methods, achieving robust generalization, preserving vascular continuity, and offering a reliable approach for liver vascular reconstructions.
肝静脉和门静脉的准确分割对于肝脏手术的术前规划至关重要,尤其是对于切除和移植手术。广泛的解剖变异、病理改变以及背景与血管结构之间固有的类别不平衡对这项任务构成了挑战。当前最先进的深度学习方法往往无法在患者个体差异中实现泛化,或维持血管拓扑结构,因此限制了它们的临床适用性。为了克服这些限制,我们提出了D-RD-UNet,一种用于肝血管和门静脉的双阶段、双类别分割框架。D-RD-UNet架构采用密集连接和残差连接来提高特征传播和分割精度。我们的D-RD-UNet集成了先进的数据驱动预处理、一种用于3D和4D数据的双路径架构,后者将计算机断层扫描(CT)与四个相关的血管性滤波器(佐藤、弗兰吉、离焦和RORPO)拼接在一起。该流程通过首个基于中心线开发的后处理多类别血管连通性校正算法得以完善。此外,我们引入了首个基于半径的分支算法来局部评估模型的预测,从而深入了解不同尺度下血管重建的准确性。为了弥补用于肝血管分割的标注良好的开放数据集的稀缺,我们精心整理了AIMS-HPV-385,这是一个基于385例CT扫描的大型、包含病理情况的多类别且经过验证的数据集。我们在AIMS-HPV-385的327例CT上训练了不同配置的D-RD-UNet和最先进的模型。在AIMS-HPV-385剩余的58例CT以及3D-IRCADb-01的20例CT上的实验结果表明,D-RD-UNet变体比最先进的方法具有更优的性能,实现了稳健的泛化,保留了血管连续性,并为肝脏血管重建提供了一种可靠的方法。