Suppr超能文献

用于大规模单细胞RNA测序数据的差异细胞通信推理框架

Differential cellular communication inference framework for large-scale single-cell RNA-sequencing data.

作者信息

Cesaro Giulia, Baruzzo Giacomo, Tussardi Gaia, Di Camillo Barbara

机构信息

Department of Information Engineering, University of Padova, Padova 35131, Italy.

Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy.

出版信息

NAR Genom Bioinform. 2025 Jun 19;7(2):lqaf084. doi: 10.1093/nargab/lqaf084. eCollection 2025 Jun.

Abstract

Single-cell transcriptomics data have been widely used to characterize biological systems, particularly in studying cell-cell communication, which plays a significant role in many biological processes. Despite the availability of various computational tools for inferring cellular communication, quantifying variations across different experimental conditions at both intercellular and intracellular levels remains challenging. Moreover, available methods are in general limited in terms of flexibility in analyzing different experimental designs and the ability to visualize results in an easily interpretable way. Here, we present a generalizable computational framework designed to infer and support differential cellular communication analysis across two experimental conditions from large-scale single-cell transcriptomics data. The scSeqCommDiff tool employs a statistical and network-based computational approach for characterizing altered cellular cross-talk in a fast and memory-efficient way. The framework is complemented with CClens, a user-friendly Shiny app to facilitate interactive analysis of inferred cell-cell communication. Validation through spatial transcriptomics data, comparison with other tools, and application to large-scale datasets (including a cell atlas) confirms the reliability, scalability, and efficiency of the framework. Moreover, the application to a single-nucleus transcriptomics dataset shows the validity and ability of the proposed workflow to support and unravel alterations in cell-cell interactions among patients with amyotrophic lateral sclerosis and healthy subjects.

摘要

单细胞转录组学数据已被广泛用于表征生物系统,尤其是在研究细胞间通讯方面,细胞间通讯在许多生物过程中起着重要作用。尽管有各种用于推断细胞通讯的计算工具,但在细胞间和细胞内水平量化不同实验条件下的差异仍然具有挑战性。此外,现有方法在分析不同实验设计的灵活性以及以易于解释的方式可视化结果的能力方面通常受到限制。在这里,我们提出了一个可推广的计算框架,旨在从大规模单细胞转录组学数据中推断并支持跨两个实验条件的差异细胞通讯分析。scSeqCommDiff工具采用基于统计和网络的计算方法,以快速且内存高效的方式表征改变的细胞间串扰。该框架辅以CClens,这是一个用户友好的Shiny应用程序,便于对推断的细胞间通讯进行交互式分析。通过空间转录组学数据进行验证、与其他工具进行比较以及应用于大规模数据集(包括细胞图谱)证实了该框架的可靠性、可扩展性和效率。此外,将其应用于单核转录组学数据集表明了所提出的工作流程在支持和揭示肌萎缩侧索硬化症患者与健康受试者之间细胞间相互作用变化方面的有效性和能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2424/12204404/0ae0e09f6ff4/lqaf084figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验