Wulandari Dika Apriliana, Zein Muhammad Ihda Hamlu Liwaissunati, Zakiyyah Salma Nur, Ishmayana Safri, Ozsoz Mehmet, Hartati Yeni Wahyuni
Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia.
Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, Bologna 40126, Italy.
ADMET DMPK. 2025 Jun 17;13(3):2766. doi: 10.5599/admet.2766. eCollection 2025.
Multidrug-resistant tuberculosis (MDR-TB) remains a significant challenge in tuberculosis (TB) treatment, driven by simultaneous mutations in the and genes that confer resistance to rifampicin and isoniazid. While many molecular diagnostic tools focus on , the gene is often overlooked despite its critical role in confirming MDR-TB. This study aims to develop a CRISPR/Cas9-based electrochemical biosensor for the rapid and selective detection of mutation.
A guide RNA (gRNA) specific to the mutation site on gene was designed using the Benchling CRISPR tool, considering on-target and off-target scores, specificity, and cleavage sites within the genome. The selected gRNA achieved the highest on-target score of 61.2 and an off-target score of 49.0 at cut position 2928, with a PAM sequence of AGG. Its cleavage efficiency was validated experimentally using an electrochemical biosensing platform incorporating a gold-modified screen-printed carbon electrode (SPCE/Au). Redox response enhancement by [Fe(CN)] confirmed the improved performance of the electrode.
The biosensor system detects the target DNA through hybridization with DNA probe-Fc, forming double-stranded DNA (dsDNA) that is recognized and cleaved by the Cas9/gRNA complex. This cleavage significantly reduces the ferrocene oxidation signal, indicating the presence of a mutation. Non-mutated target DNA produces a nondetectable ferrocene signal, suggesting that the Cas9 enzyme may remain bound to the electrode without cleavage. The CRISPR/Cas9 electrochemical biosensor demonstrated a low detection limit of 7.5530 aM and a detection range of 10 to 10 aM.
The CRISPR/Cas9-based electrochemical biosensor exhibits high sensitivity and specificity for the detection mutation, offering a promising platform for rapid MDR-TB diagnostics.
耐多药结核病(MDR-TB)仍然是结核病治疗中的一项重大挑战,这是由赋予对利福平及异烟肼耐药性的 和 基因同时发生突变所驱动的。虽然许多分子诊断工具聚焦于 ,但 基因尽管在确认MDR-TB中起着关键作用却常常被忽视。本研究旨在开发一种基于CRISPR/Cas9的电化学生物传感器,用于快速、选择性地检测 突变。
使用Benchling CRISPR工具,针对 基因上的突变位点设计了一种向导RNA(gRNA),同时考虑了靶点及脱靶评分、特异性以及 基因组内的切割位点。所选gRNA在切割位置2928处实现了最高靶点评分61.2和脱靶评分49.0,其原间隔序列临近基序(PAM)序列为AGG。使用包含金修饰丝网印刷碳电极(SPCE/Au)的电化学生物传感平台通过实验验证了其切割效率。[Fe(CN)]增强氧化还原响应证实了电极性能的改善。
该生物传感器系统通过与DNA探针-Fc杂交来检测目标DNA,形成双链DNA(dsDNA),该双链DNA被Cas9/gRNA复合物识别并切割。这种切割显著降低了二茂铁氧化信号,表明存在 突变。未突变的目标DNA产生不可检测的二茂铁信号,这表明Cas9酶可能保持与电极结合而不发生切割。CRISPR/Cas9电化学生物传感器显示出7.5530 aM的低检测限和10至10 aM的检测范围。
基于CRISPR/Cas9的电化学生物传感器在检测 突变方面表现出高灵敏度和特异性,为快速诊断耐多药结核病提供了一个有前景的平台。