Suppr超能文献

利用喜马拉雅铁角蕨合成银纳米颗粒及其表征与潜在生物学特性

Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties.

作者信息

Parveen Shafia, Iqbal Shazia, Maher Saima, Wilson Paul, Nasir Habib, Soomro Samreen, Nisar Shazia, Imran Muhammad, Riaz Musarat, Urooj Rabail, Bakhshi Mah Ganj, Essa Maria, Mukhtar Farah, Bhatti Attya, Janjua Hussnain A, Faisal Amir, Saleem Arsalan

机构信息

Department of Chemistry, Sardar Bahadur Khan Women University Quetta, Quetta, Pakistan.

Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan.

出版信息

PLoS One. 2025 Jun 30;20(6):e0325533. doi: 10.1371/journal.pone.0325533. eCollection 2025.

Abstract

This study investigated the green synthesis of silver nanoparticles (AgNPs) using the medicinal plant Asplenium dalhousiae focusing on its bioactive chemical constituents as natural reducing agents. Aqueous, chloroform, and n-hexane extracts of the plant leaves were utilized in the nanoparticle synthesis process. The synthesized AgNPs were confirmed through UV-visible spectroscopy, showing absorption peaks at approximately 420 nm, 443 nm, and 439 nm. Fourier-transform infrared (FTIR) spectroscopy was used to recognize the functional groups in the plant extracts responsible for facilitating the reduction process. The morphological and structural characteristics of the synthesized nanoparticles were analyzed using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). These analyses revealed that the nanoparticles synthesized using the Aqueous, chloroform, and n-hexane extracts were predominantly spherical silver nanoparticles (AgNPs) with a crystalline structure and an average diameter of 46.98 ± 12.45 nm, as determined by SEM. The antibacterial efficacy of the synthesized AgNPs was evaluated against Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa at a concentration of 30 μg/ml. Among the tested nanoparticles, the AgNPs synthesized from the n-hexane extract exhibited the highest antibacterial activity, with zones of inhibition measuring 20.0 ± 1.8 mm for E. coli, 19.0 ± 1.2 mm for B. subtilis, and 19.5 ± 1.4 mm for P. aeruginosa. Additionally, the silver nanoparticles (AgNPs) from Asplenium dalhousiae demonstrated significant α-amylase inhibition, with 85.04% inhibition at 500 µg/ml, compared to Acarbose (90.84%) and the leaf extract (78.65%). The antioxidant activity of the synthesized AgNPs was assessed using the DPPH method, which confirmed their significant antioxidant properties alongside their antibacterial activity. The aqueous and n-hexane silver nanoparticles (AgNPs) showed strong cytotoxic activity with low IC50 values, particularly in A2780 cells (15.76 µg/ml and 9.11 µg/ml, respectively), while the plant methanolic extract and CHCl3 AgNPs exhibited much higher IC50 values, indicating moderate to low activity. This study highlights the potential of AgNPs in handling anticancer, α-amylase, and antibacterial infections. By assimilating natural products with nanotechnology, it deals an inventive approach to developing targeted, eco-friendly therapies, paving the way for cutting-edge biomedical applications and improved treatment outcomes.

摘要

本研究以药用植物大叶铁角蕨为原料,利用其生物活性化学成分作为天然还原剂,对银纳米颗粒(AgNPs)的绿色合成进行了研究。在纳米颗粒合成过程中使用了植物叶片的水提取物、氯仿提取物和正己烷提取物。通过紫外可见光谱法对合成的AgNPs进行了确认,其在约420nm、443nm和439nm处出现吸收峰。利用傅里叶变换红外(FTIR)光谱法识别植物提取物中有助于还原过程的官能团。使用扫描电子显微镜(SEM)和X射线衍射(XRD)对合成纳米颗粒的形态和结构特征进行了分析。这些分析表明,用水提取物、氯仿提取物和正己烷提取物合成的纳米颗粒主要是球形银纳米颗粒(AgNPs),具有晶体结构,通过SEM测定其平均直径为46.98±12.45nm。在浓度为每毫升30微克的情况下,对合成的AgNPs针对大肠杆菌、枯草芽孢杆菌和铜绿假单胞菌的抗菌效果进行了评估。在测试的纳米颗粒中,由正己烷提取物合成的AgNPs表现出最高的抗菌活性,对大肠杆菌的抑菌圈为20.0±1.8毫米,对枯草芽孢杆菌为19.0±1.2毫米,对铜绿假单胞菌为19.5±1.4毫米。此外,大叶铁角蕨的银纳米颗粒(AgNPs)表现出显著的α-淀粉酶抑制作用,在500微克/毫升时抑制率为85.04%,与阿卡波糖(90.84%)和叶片提取物(78.65%)相比。使用DPPH方法评估了合成的AgNPs的抗氧化活性,该方法证实了它们除抗菌活性外还具有显著的抗氧化特性。水相和正己烷银纳米颗粒(AgNPs)表现出很强的细胞毒性活性,IC50值较低,特别是在A2780细胞中(分别为15.76微克/毫升和9.11微克/毫升),而植物甲醇提取物和CHCl3 AgNPs的IC50值要高得多,表明活性为中度到低度。本研究突出了AgNPs在处理抗癌、α-淀粉酶和抗菌感染方面的潜力。通过将天然产物与纳米技术相结合,它为开发有针对性的、生态友好型疗法提供了一种创新方法,为前沿生物医学应用和改善治疗效果铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f2c/12208411/ad752d4f283c/pone.0325533.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验