Suppr超能文献

用于结果预测的线性联邦学习及其在肝细胞癌放射治疗中的应用

Linear Federated Learning for Outcome Prediction With Application to Hepatocellular Carcinoma Radiotherapy.

作者信息

Shah Keyur D, Paganetti Harald, Yepes Pablo, Hong Theodore S, Wo Jennifer Y, Roberts J Hannah, Koay Eugene J, Guthier Christian V, Chamseddine Ibrahim

机构信息

Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA.

Department of Radiation Oncology, Mass General Brigham, Harvard Medical School, Boston, MA.

出版信息

JCO Clin Cancer Inform. 2025 Jul;9:e2500074. doi: 10.1200/CCI-25-00074. Epub 2025 Jun 30.

Abstract

PURPOSE

Federated learning (FL) enables multi-institutional predictive modeling without sharing raw patient data, preserving privacy while leveraging diverse data sets. This study evaluates the use of linear FL (LFL) as an interpretable approach to enhance sample size and generalizability in outcome prediction. As a proof of concept, we applied LFL to patients with hepatocellular carcinoma (HCC) undergoing external beam radiotherapy (EBRT), predicting hepatic toxicity and 1-year survival (SRVy1).

METHODS

Patient data from Massachusetts General Hospital (MGH) and Brigham and Women's Hospital (BWH) were used to train models, whereas an independent validation data set from MD Anderson Cancer Center assessed generalizability. Logistic regression was developed to predict hepatic toxicity and SRVy1 using key clinical features, including baseline albumin, bilirubin, Child-Pugh score, liver size, and mean liver dose. The LFL approach allowed each institution to train models locally without sharing raw patient data. Model performance was evaluated using the AUC and compared between the LFL model and institution-specific models.

RESULTS

For survival prediction, single-institution models were limited, with AUC = 0.55-0.63, with LFL increasing it to 0.67. For toxicity prediction, external validation showed AUC = 0.68 for the MGH model and 0.69 for the BWH model, with LFL maintaining the AUC at 0.7. The model coefficients were moderate in the LFL compared with the single-institution models, indicating an ability to mitigate bias, which was also reflected by better performance on the validation data set.

CONCLUSION

LFL maintained or improved predictive performance over single-institution models for survival and hepatic toxicity in patients with HCC treated with EBRT while preserving model interpretability and patient privacy. These findings support LFL's role in multi-institutional collaborations.

摘要

目的

联邦学习(FL)能够在不共享原始患者数据的情况下进行多机构预测建模,在利用多样数据集的同时保护隐私。本研究评估线性联邦学习(LFL)作为一种可解释方法在提高结局预测中的样本量和可推广性方面的应用。作为概念验证,我们将LFL应用于接受外照射放疗(EBRT)的肝细胞癌(HCC)患者,预测肝毒性和1年生存率(SRVy1)。

方法

来自麻省总医院(MGH)和布莱根妇女医院(BWH)的患者数据用于训练模型,而来自MD安德森癌症中心的独立验证数据集评估可推广性。使用关键临床特征(包括基线白蛋白、胆红素、Child-Pugh评分、肝脏大小和平均肝脏剂量)建立逻辑回归模型来预测肝毒性和SRVy1。LFL方法允许每个机构在不共享原始患者数据的情况下在本地训练模型。使用AUC评估模型性能,并在LFL模型和机构特定模型之间进行比较。

结果

对于生存预测,单机构模型有限,AUC = 0.55 - 0.63,而LFL将其提高到0.67。对于毒性预测,外部验证显示MGH模型的AUC = 0.68,BWH模型的AUC = 0.69,LFL将AUC维持在0.7。与单机构模型相比,LFL中的模型系数适中,表明有减轻偏差的能力,这也在验证数据集上的更好性能中得到体现。

结论

对于接受EBRT治疗的HCC患者,LFL在生存和肝毒性预测方面维持或优于单机构模型,同时保留了模型的可解释性和患者隐私。这些发现支持了LFL在多机构合作中的作用。

相似文献

1
Linear Federated Learning for Outcome Prediction With Application to Hepatocellular Carcinoma Radiotherapy.
JCO Clin Cancer Inform. 2025 Jul;9:e2500074. doi: 10.1200/CCI-25-00074. Epub 2025 Jun 30.
3
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?
Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22.
4
External beam radiotherapy for unresectable hepatocellular carcinoma.
Cochrane Database Syst Rev. 2017 Mar 7;3(3):CD011314. doi: 10.1002/14651858.CD011314.pub2.
6
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
7
Predictive Model of Liver Toxicity to Aid the Personalized Selection of Proton Versus Photon Therapy in Hepatocellular Carcinoma.
Int J Radiat Oncol Biol Phys. 2023 Aug 1;116(5):1234-1243. doi: 10.1016/j.ijrobp.2023.01.055. Epub 2023 Feb 4.
10
Management of people with intermediate-stage hepatocellular carcinoma: an attempted network meta-analysis.
Cochrane Database Syst Rev. 2017 Mar 10;3(3):CD011649. doi: 10.1002/14651858.CD011649.pub2.

本文引用的文献

2
Federated learning for enhanced dose-volume parameter prediction with decentralized data.
Med Phys. 2025 Mar;52(3):1408-1415. doi: 10.1002/mp.17566. Epub 2024 Dec 6.
3
A decentralized federated learning-based cancer survival prediction method with privacy protection.
Heliyon. 2024 May 23;10(11):e31873. doi: 10.1016/j.heliyon.2024.e31873. eCollection 2024 Jun 15.
5
Federated Learning Survival Model and Potential Radiotherapy Decision Support Impact Assessment for Non-small Cell Lung Cancer Using Real-World Data.
Clin Oncol (R Coll Radiol). 2024 Jul;36(7):e197-e208. doi: 10.1016/j.clon.2024.03.008. Epub 2024 Mar 16.
10
Predictive Model of Liver Toxicity to Aid the Personalized Selection of Proton Versus Photon Therapy in Hepatocellular Carcinoma.
Int J Radiat Oncol Biol Phys. 2023 Aug 1;116(5):1234-1243. doi: 10.1016/j.ijrobp.2023.01.055. Epub 2023 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验