Suppr超能文献

轻度创伤性脑损伤后计算机断层扫描病变检测的斯德哥尔摩评分(SELECT-TBI)研究:初步分析与统计分析计划

Stockholm Score of Lesion Detection on Computed Tomography following Mild Traumatic Brain Injury (SELECT-TBI) Study: Pilot Analysis and Statistical Analysis Plan.

作者信息

Yang Li Jin, Tatter Charles, Fletcher-Sandersjöö Alexander, Froese Logan, Lassarén Philipp, Tjerkaski Jonathan, Bergman Erica E, Björkman Frida E, Bronge Jonas, Antonsson Julia, Teromaa Kasper, Nylander Maria, Örtqvist Simon, Kylander William, Lindqvist William, Ängeby Kristian, Rubenson Wahlin Rebecka, Thelin Eric P

机构信息

Department of Emergency Medicine, Stockholm South General Hospital, Stockholm, Sweden.

Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.

出版信息

Acta Neurochir (Wien). 2025 Jul 1;167(1):181. doi: 10.1007/s00701-025-06598-1.

Abstract

BACKGROUND

Mild traumatic brain injury (mTBI) is a common cause of emergency department visits. Only a small percentage of mTBI patients develop an intracranial lesion (ICL) and even fewer will require neurosurgical intervention due to their injury. The Stockholm Score of Lesion Detection on Computed Tomography following Mild Traumatic Brain Injury (SELECT-TBI) study aims to provide a data-driven approach to estimate individualized risk for traumatic ICL and clinically significant lesions in mTBI patients.

OBJECTIVE

To provide a statistical analysis plan and pilot data analysis before completion of data collection, as pre-planned in the published study protocol.

METHODS

Retrospective study of patients ≥ 15 years old who underwent a computed tomography (CT) scan for their mTBI in Stockholm, Sweden, between 2015-2020. Up to 73 variables were collected for each patient. Data analysis of the first 5 000 patients in the cohort was conducted to develop preliminary prediction models using Lasso regression, general linear model and random forest and to perform an optimal population analysis to determine whether the final sample size would be sufficient.

RESULTS

Six data selection strategies were tested, and area under the curve (AUC) receiver operator characteristic (ROC) curves were generated with a 4:1 training/validation data segmentation. The best-performing model was the Lasso regression model which achieved an AUC of 0.807 for any ICL and 0.903 for clinically significant ICL (accuracy of 70% and 97.7%, and Brier scores of 0.3 and 0.023 respectively). Clinical variables identified as key features across all models were Glasgow Coma Scale, signs of basilar skull fracture, trauma mechanism, and vomiting, each with an importance score greater than 0.1 (explaining more than 10% model variance). Finally, the highest end prediction of the necessary population size was found to be 29 667 patients.

CONCLUSION

Our preliminary results demonstrate the potential for a data-driven approach to generate personalized risk stratification tools. With a final cohort size expected to exceed 40 000 patients, we anticipate being able to create more granular models optimized for integration into clinical decision-making.

STUDY REGISTRATION

ClinicalTrials.gov NCT04995068.

摘要

背景

轻度创伤性脑损伤(mTBI)是急诊科就诊的常见原因。只有一小部分mTBI患者会出现颅内病变(ICL),因伤需要神经外科干预的患者更少。轻度创伤性脑损伤后计算机断层扫描病变检测的斯德哥尔摩评分(SELECT-TBI)研究旨在提供一种数据驱动的方法,以估计mTBI患者发生创伤性ICL和具有临床意义病变的个体风险。

目的

按照已发表的研究方案预先计划,在完成数据收集之前提供统计分析计划和初步数据分析。

方法

对2015年至2020年期间在瑞典斯德哥尔摩因mTBI接受计算机断层扫描(CT)的15岁及以上患者进行回顾性研究。为每位患者收集多达73个变量。对队列中的前5000名患者进行数据分析,以使用套索回归、一般线性模型和随机森林开发初步预测模型,并进行最优总体分析,以确定最终样本量是否足够。

结果

测试了六种数据选择策略,并采用4:1的训练/验证数据分割生成曲线下面积(AUC)接受者操作特征(ROC)曲线。表现最佳的模型是套索回归模型,对于任何ICL,其AUC为0.807,对于具有临床意义的ICL,AUC为0.903(准确率分别为70%和97.7%,布里尔评分分别为0.3和0.023)。在所有模型中被确定为关键特征的临床变量包括格拉斯哥昏迷量表、颅底骨折体征、创伤机制和呕吐,每个变量的重要性得分均大于0.1(解释模型方差超过10%)。最后,发现所需总体规模的最高最终预测值为29667名患者。

结论

我们的初步结果证明了数据驱动方法生成个性化风险分层工具的潜力。预计最终队列规模将超过40000名患者,我们期望能够创建更精细的模型,以优化整合到临床决策中。

研究注册

ClinicalTrials.gov NCT04995068。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6be/12213853/e3df4a549eba/701_2025_6598_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验