Suppr超能文献

FeO纳米颗粒链中的上层结构磁各向异性

Superstructure magnetic anisotropy in FeO nanoparticle chains.

作者信息

Mohapatra Jeotikanta, Joshi Pramanand, Abbas Hur, Gusenbauer Markus, Bian Kaifu, Lu Ping, Fan Hongyou, Schrefl Thomas, Liu J Ping

机构信息

Department of Physics, University of Texas at Arlington, Arlington, TX, USA.

Christian Doppler Laboratory for Magnet Design Through Physics Informed Machine Learning, Wiener Neustadt, Austria.

出版信息

Nat Commun. 2025 Jul 1;16(1):5723. doi: 10.1038/s41467-025-60888-x.

Abstract

Magnetic anisotropy is essential for many applications of ferromagnetic/ferrimagnetic materials, including permanent magnets and magnetic recording media. Attempts have been made recently to build up 3-D nanoparticle and quantum dot assemblies, however, it is not understood yet if a nanoparticle assembly can possess high magnetic anisotropy with low anisotropic materials. In this article, we report our discovery of high magnetic anisotropy resulted from FeO nanoparticle chains. We started with closely-packed nanoparticle assemblies of spherical FeO nanoparticles that exhibit low magnetocrystalline anisotropy and shape anisotropy, and corresponding negligible coercivity. When the nanoparticle assemblies are compressed under pressure, they form bundles or arrays that consist of FeO chains with a length scale of several hundred nanometers. Magnetic measurements show that these FeO chain arrays possess a high uniaxial magnetic anisotropy (K ~ 2.9×10J/m³) and significant magnetic coercivity. Our simulations reveal that interparticle magnetic dipolar interactions contribute to this type of superstructure magnetic anisotropy. This study demonstrates the feasibility and approaches to create "patterned" high magnetic anisotropy in nanoparticle superstructures/assemblies.

摘要

磁各向异性对于铁磁/亚铁磁材料的许多应用至关重要,包括永磁体和磁记录介质。最近人们尝试构建三维纳米颗粒和量子点组件,然而,目前尚不清楚纳米颗粒组件是否能用低各向异性材料实现高磁各向异性。在本文中,我们报告了我们对由FeO纳米颗粒链产生的高磁各向异性的发现。我们从紧密堆积的球形FeO纳米颗粒组件开始,这些组件表现出低磁晶各向异性和形状各向异性,相应的矫顽力可忽略不计。当纳米颗粒组件在压力下压缩时,它们形成由长度尺度为几百纳米的FeO链组成的束或阵列。磁性测量表明,这些FeO链阵列具有高单轴磁各向异性(K ~ 2.9×10J/m³)和显著的矫顽力。我们的模拟表明,颗粒间磁偶极相互作用导致了这种类型的超结构磁各向异性。这项研究证明了在纳米颗粒超结构/组件中创建“图案化”高磁各向异性的可行性和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a77/12216459/8c7391c32742/41467_2025_60888_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验