Dong Yufang, Chen Yonglin, Jin Zhe, Dong Xingbo
School of Medicine, Nankai University, Tianjin, 300350, China.
School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei, 230601, China.
Sci Rep. 2025 Jul 1;15(1):21587. doi: 10.1038/s41598-025-00183-3.
In recent studies on Alzheimer's disease (AD), various network models have shown significant potential in disease prediction. However, traditional CNNs often rely on parameterized loss functions, limiting the robustness of these models. Additionally, their high computational complexity increases resource demands. To address these challenges, this study proposes a novel prediction model that integrates the strengths of ViTs and the MedMamba module. First, this study draws on the SS-Conv-SSM module from the MedMamba model, which processes image branches in parallel to extract richer and more refined features. Building on this, we optimized the original purely convolutional structure into a hybrid architecture combining convolution and Transformer layers. This not only reduces the computational burden and enhances operational efficiency but also improves the model's ability to capture global features. Moreover, we introduced a new self-attention mechanism into the model's MDTA module, reducing the computational complexity from quadratic to linear. This allows the model to maintain high performance while achieving more lightweight and efficient operations. The final experimental results demonstrate that this model outperforms current state-of-the-art methods in predicting Alzheimer's using brain [Formula: see text]-FDG PET (fluorodeoxyglucose positron emission tomography) images, particularly excelling in distinguishing AD from mild cognitive impairment.
在最近关于阿尔茨海默病(AD)的研究中,各种网络模型在疾病预测方面显示出显著潜力。然而,传统的卷积神经网络(CNNs)通常依赖参数化损失函数,限制了这些模型的鲁棒性。此外,它们的高计算复杂度增加了资源需求。为应对这些挑战,本研究提出了一种新颖的预测模型,该模型整合了视觉Transformer(ViTs)和MedMamba模块的优势。首先,本研究借鉴了MedMamba模型中的SS-Conv-SSM模块,该模块并行处理图像分支以提取更丰富、更精细的特征。在此基础上,我们将原始的纯卷积结构优化为卷积层和Transformer层相结合的混合架构。这不仅减轻了计算负担,提高了运算效率,还提升了模型捕捉全局特征的能力。此外,我们在模型的MDTA模块中引入了一种新的自注意力机制,将计算复杂度从二次降低到线性。这使得模型在保持高性能的同时,实现了更轻量级、更高效的运算。最终实验结果表明,该模型在使用脑部[公式:见原文]-FDG PET(氟代脱氧葡萄糖正电子发射断层扫描)图像预测阿尔茨海默病方面优于当前最先进的方法,尤其在区分AD与轻度认知障碍方面表现出色。