Suppr超能文献

基于转录组结合孟德尔随机化鉴定青光眼的诊断生物标志物。

Identifying diagnostic biomarkers for glaucoma based on transcriptome combined with Mendelian randomization.

作者信息

Lin Xiuli, Ma Chuanyong, Zhang Xiaoxue, Qiu Yuzhe, Cui Yi, Xu Nuo

机构信息

Department of Ophthalmology, Fujian Geriatric Hospital, North Hospital of Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.

Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20695. doi: 10.1038/s41598-025-03781-3.

Abstract

Glaucoma poses a significant global health challenge, yet reliable biomarkers for its diagnosis and treatment remain scarce. This study employed Mendelian randomization (MR) and bioinformatics approaches to identify potential biomarkers for glaucoma. Using the GSE9944 dataset, differentially expressed genes (DEGs) were identified and analyzed through protein-protein interaction (PPI) networks and functional enrichment. MR analysis selected DEGs for further evaluation using support vector machine-recursive feature elimination (SVM-RFE), with genes exhibiting high differential expression and an area under the curve (AUC) > 0.7 considered as candidate biomarkers. Among 836 DEGs, the PPI network revealed complex interactions, and functional enrichment highlighted significant involvement of the PI3K-AKT and MAPK signaling pathways. MR analysis linked 113 DEGs to glaucoma, with 57 genes showing consistent expression trends. SVM-RFE identified six signature genes, among which ATP6V0D1 and FAM89B emerged as robust biomarkers (AUC > 0.7). Molecular regulatory network analysis and drug prediction analysis further revealed potential mechanisms and compounds targeting these biomarkers, providing new therapeutic avenues for glaucoma. Experimental validation confirmed that ATP6V0D1 and FAM89B were significantly downregulated under both mechanical and swelling stress conditions, with concurrent suppression of the PI3K/AKT pathway. In conclusion, ATP6V0D1 and FAM89B are promising biomarkers for glaucoma, offering potential applications in diagnosis, treatment, and advancing the understanding of glaucoma pathogenesis.

摘要

青光眼是一项重大的全球健康挑战,但用于其诊断和治疗的可靠生物标志物仍然稀缺。本研究采用孟德尔随机化(MR)和生物信息学方法来识别青光眼的潜在生物标志物。利用GSE9944数据集,通过蛋白质-蛋白质相互作用(PPI)网络和功能富集来识别和分析差异表达基因(DEG)。MR分析使用支持向量机-递归特征消除(SVM-RFE)选择DEG进行进一步评估,差异表达高且曲线下面积(AUC)>0.7的基因被视为候选生物标志物。在836个DEG中,PPI网络显示出复杂的相互作用,功能富集突出了PI3K-AKT和MAPK信号通路的显著参与。MR分析将113个DEG与青光眼联系起来,其中57个基因表现出一致的表达趋势。SVM-RFE识别出6个特征基因,其中ATP6V0D1和FAM89B成为可靠的生物标志物(AUC>0.7)。分子调控网络分析和药物预测分析进一步揭示了针对这些生物标志物的潜在机制和化合物,为青光眼提供了新的治疗途径。实验验证证实,在机械和肿胀应激条件下,ATP6V0D1和FAM89B均显著下调,同时PI3K/AKT通路受到抑制。总之,ATP6V0D1和FAM89B是有前景的青光眼生物标志物,在诊断、治疗以及推进对青光眼发病机制的理解方面具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验