Zidar Mitja, Cucuzza Stefano, Bončina Matjaž, Kuzman Drago
Novartis Pharma AG, TRD Biologics & CGT, GDD, 4002, Basel, Switzerland.
Novartis Pharma AG, TRD Biologics & CGT, GDD, 1234, Menges, Slovenia.
Sci Rep. 2025 Jul 1;15(1):22355. doi: 10.1038/s41598-025-07037-y.
Stability studies are vital in biologics development, guiding formulation, packaging, and shelf life determination. Traditionally, predicting long-term stability based on short-term data has been challenging due to the complex behavior of biologics. However, recently have been demonstrated that by using simple kinetics and the Arrhenius equation, it is possible to achieve accurate long-term stability predictions for various quality attributes, including protein aggregates. This study focuses on effective modeling of aggregate predictions for diverse protein modalities, such as IgG1, IgG2, Bispecific IgG, Fc fusion, scFv, bivalent nanobodies, and DARPins, using a first-order kinetic model. Notably, findings highlight the significance of temperature selection in stability studies, enabling the identification of dominant degradation processes. Additionally, simplicity of the first-order kinetic model enhances reliability by reducing the number of parameters and samples required. The model's effectiveness was further validated across various protein formats, beyond IgG, emphasizing its broad applicability and reliability. Compared to linear extrapolation, the kinetic model provided more precise and accurate stability estimates, even with limited data points. These findings highlight the benefits of using kinetic modeling with optimal temperature selection to predict protein aggregate stability and other quality attributes, aiding biologics development and shelf-life determination.
稳定性研究在生物制品开发中至关重要,指导着制剂、包装和保质期的确定。传统上,由于生物制品行为复杂,基于短期数据预测长期稳定性一直具有挑战性。然而,最近已证明,通过使用简单动力学和阿仑尼乌斯方程,可以对包括蛋白质聚集体在内的各种质量属性实现准确的长期稳定性预测。本研究重点在于使用一级动力学模型,对多种蛋白质形式(如IgG1、IgG2、双特异性IgG、Fc融合蛋白、单链抗体、二价纳米抗体和设计型锚蛋白重复蛋白)的聚集体预测进行有效建模。值得注意的是,研究结果突出了稳定性研究中温度选择的重要性,有助于识别主要降解过程。此外,一级动力学模型的简单性通过减少所需参数和样本数量提高了可靠性。该模型的有效性在除IgG之外的各种蛋白质形式中得到进一步验证,强调了其广泛的适用性和可靠性。与线性外推法相比,即使数据点有限,动力学模型也能提供更精确和准确的稳定性估计。这些发现突出了使用具有最佳温度选择的动力学建模来预测蛋白质聚集体稳定性和其他质量属性的益处,有助于生物制品开发和保质期确定。